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This course aims to give an introduction to the world of complex geometry. The main idea I would
like to convey to the reader is the strong local-to-global properties that holomorphic functions
possess, and thus manifolds whose transition functions are holomorphic: complex manifolds.

I have based these notes on the two excellent books, the first by Daniel Huybrechts [Huy05] and
the other by Jean-Pierre Demailly, [Dem12], who unfortunately passed away before the book was

ever published, and only online drafts are available.
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1 Holomorphic functions: Local theory

We begin by reviewing fundamental properties of holomorphic functions and their generalisation to
several complex variables. We identify C" = R?" as real vector spaces via the map (21, ..., 2,) —

(Z1,Y1, ..., %, Yn) Where z; = x; + iy;.

Definition 1.1. A function f : R*" — R?™ is differentiable at 2o if there exists a linear map D f,,
such that

f(z) = f(20) + D fz(z = z0) + o([|z = zol])-

Definition 1.2. A function f : C® — C™ is holomorphic at zg if it is real-differentiable and its
differential Df,, is complex-linear, i.e., D f,, € Hom¢(C",C™) = GL(n,C) C GL(2n,R).

The complex-linearity condition can be expressed using the standard complex structure J on R?”
(multiplication by ):

JoDf, =Df, ol (1)
This is the coordinate-free form of the Cauchy-Riemann equations.

In coordinates z; = x; +iy; and f = (u1 +v1, ..., Uy + 10y), equation becomes:

0, .ukza Uk
I Y forj=1,...,.n;k=1,....,m.
Gyjuk:—amjvk

A powerful reformulation uses the Wirtinger operators:

o . _1(o 0N 9 _1(9 0
0z T2 Ox;j 0y; ’ 0z; T2 Ox;j 0y; .
Lemma 1.3. The Wirtinger operators satisfy:
) of _(of
Y %z = <3Zj>

S0 0
(ZZ) 87%—(5]]6, 62] =0

(Z.Z.i) FO?”f=<f1,...,fm) andg:(gly--~7gn):

8(f09):§: Of 99, Of Ogk
aZj P owy, 82’]' 811}7]632]
O(fog) _~N~(0f g . OF (Ogk
0% _kzl dwy 0z, Owg \ 9z

Moreover, f is holomorphic if and only if gf =0 for all j.
Zj



We can consider the complexified derivative
Df(20)" : T,,R*™ ® C — Ty, R* ® C.

The space T3 R*" @ C (resp. Tp(,,)R™ ® C) admits the canonical coordinate base {8/0z;,0/07}
(resp. {0/0w,0/0w}). In this base, the Jacobian in block form takes the form
The a holomorphic map f, the matrix of derivatives has the form

(gf 0)
Df=|% a7

f )
0 &

reflecting complex-linearity (no d/0z-components) of f. It follows that for any holomorphic function
f, det (Df(20)%) is real and non-negative; det (D f(z0)) > 0.

Definition 1.4. A holomorphic map f: U — V is called biholomorphic if there exists a holomor-
phic inverse g to f.

If f is holomorphic and regular (non-degenerate Jacobian), then its Jacobian determinant satisfies

det (3;)

In particular, det(Df) # 0 is the local invertibility criterion. Indeed, we have the holomorphic

2

det Df = > 0.

version of the inverse function theorem:

Theorem 1.5 ( Holomorphic Inverse Function Theorem). Let U,V C C" open and f : U — Va
holomorphic map. Consider zy € U such that det(Df(z9) # 0. Then there exist open subsets
20 € U'cU and f(z9) € V'CV such that f restricts to a biholomorphism.

More generally, a holomorphic map f : U — V is called a regular (submersion/immersion as

appropriate) when the complex-linear partials {0f/0z;} , are surjective (or injective) as needed.

Theorem 1.6 (Holomorphic Implicit Function Theorem). Let U C C" and V' C C™ be open sets
with n > m and f : U — V a holomorphic function. Assume that there is zy such that D f(zg)

det <afi>
0z; ij=1,.n

Then there exists open sets Uy C CP™™, Uy C C™ such that Uy x Uy C U and a holomorphic
function g : Uy — Us satisfying f(w, g(w)) = f(z0) for all w € Uy.

satisfies

£0. (2)

Proof. The inverse function theorem guarantees the existence and differentiability of g. We need
to show that g is holomorphic. Indeed, by the chain rule of Lemma [I.3] we have

afz Z afz 6gk 8fz (@%) Z 6fz agk

Dz, Ow; 87k dw; Dz, Ow;

0= 887[]01(1” g( ]

where the first and third terms in the middle line vanish since f is holomorphic.
But the condition in Equation (2|) implies that <8£ f) is invertible, so the only way the second line

can vanish is if 2 82, = 0, as needed. O
J



A straightforward corollary of the Holomorphic Implicit Function Theorem is the existence of left

(resp. right) holomorphic inverses. We have

Corollary 1.7. Let U C C" and V C C™ be open sets and f : U — V a holomorphic function.

Assume we have zy € U such that D f(zo) has mazimal rank. Then,

(i) If n > m, there exists open sets z9 € U' C U and V' C V, and a biholomorphic map
g: V' —= U’ such that fog=1d in V'.

(ii) If n < m, there exists open sets U' C U and f(z9) € V' C V, and a biholomorphic map
g: V' = U such that go f = (1d,,0) in U’.

1.1 Cauchy Integral Formula and power series expansion
Recall that a key result of complex analysis is the integral formula of Cauchy:

Theorem 1.8 (Cauchy Integral Formula). Let K C C be a compact subset with piecewise C*
boundary C' = 0K, and f : K — C a differentiable function. Then for z € K \ 0K, we have

f(w,@)dw+ %dw/\d@
oK W —Z Kk OWw w—z

2mif (=) = 3)

Proof. Without loss of generality, we assume z = 0. We want to study the function f(w,w)/w €
LY(K). Taking 6 > 0, we have on one side,

/ <f(w7w)> / Of dw A dw
d dz = — —_ .
K\B5(0) w K\By(0) 00w

On the other side, by Stokes’ theorem, we get
K\B;(0)

w K w dB;s w

Parametrising the last term in polar coordinates w = e, we have

— 2
flww) _ £(5,0)ido .
oB; W 0
Putting everything together and taking § to zero, the claim follows by continuity of f. O

Of course, we are mostly interested in the case where f is holomorphic, so the last term in

vanishes, and we have the usual expression

fe) = [ LWy, (1)

21 Jog W — 2

The Cauchy Integral Formula (CIF) generalises to higher dimensions by considering polydiscs
Dgr(w) = Br,(w1) X ... Bg, (w,) and iterative use of Fubini’s theorem.

Exercise 1.9. Prove the n-dimensional Cauchy Integral Formula in detail:

1 flwi, ... wy)
f(z) = /a o dw . dw, .

(2mi)m wy —21) ... (wy, — 2p)
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The CIF has some important, remarkable consequences for the regularity of the function f:

Proposition 1.10. Let f : U — C be a holomorphic function. Then f is analytic. That is, it

admits a convergent power series expansion
2mif(z g
|a|>0

with a a multi-index o = (aq,...,Qp), .
111
z—w z(1—w/2)

Proof. We argue the case n = 1; the higher-dimensional case follows. We know

w . . . .

E —71 for [w| < |z[. Substituting in the CIF and using Lebesgue monotone convergence, we have
z

k>0

, =)
2mif (w) = 02— /C;O kzk+1 ;0 /zk-l—l

Analyticity follows. The coefficients of the power expansion are the successive derivatives of f by
the uniqueness of Taylor expansions. Alternatively, one can check directly:

, f(w+h)—f( ) /() ()

f(w) = Jim, flfi%zmh cz—(w+h) z-w
1 f(z)

h—>02mh/ (z—w-— h —w) © 7 o Cmdz

dz

The analyticity of holomorphic functions has some remarkable consequences:

Theorem 1.11 (Open mapping theorem). Let f : U — C be a non-constant holomorphic function
on an open set U. The f is an open mapping.
In particular, if there exists zg € U such that |f(z)| < |f(z0)| for all z € U, f is constant.

Theorem 1.12 (Identity principle). Let U be an open connected subset of C"* and f,g : U — C
holomorphic functions. If f = g on an open subset V C U, then f =g on all of U.

Proof. Let
(6%
W = zeU’af (99 V o multi-index .
0z%  0z%
The set W is clearly closed and non-empty. By analyticity, W is also open, and by connectedness,
W ="U. O

Another consequence of the Cauchy Integral Formula, Equation , is

Lemma 1.13 (Cauchy inequality). Let f : U — C be a holomorphic function and take R > 0 such
that the ball Br(zo) is contained in U. Then
ol

1F @ (z0)| < o sup |£(2)] ()

Re 0BR(20)



There are two important corollaries of this inequality:

Theorem 1.14 (Generalised Liouville theorem). Let f : C* — C a holomorphic function such that
If(2)| < C(1+|z|)P for some C, D > 0. Then f is a polynomial with degree at most D.

Theorem 1.15 (Montel’s theorem). Let U C C™ open, and consider O(U) the space of holomorphic
functions on U, equipped with the uniform convergence on compact sets topology, induced by CO(U).

Then every locally uniformly bounded sequence (f;j); C O(U) has a convergent subsequence.

Proof. By Arzela—Ascoli. O

1.2 Hartogs’ phenomenon and the Weierstrass theorems

So far, all properties that we have discussed are direct analogues of properties that occur in complex
analysis (n = 1) and have discussed the rigidity of holomorphic functions. First, we need the

following technical lemma

Lemma 1.16. Consider the open cylinder U x V with U C C™ open, and V C C a neighbourhood
of 0B:(zp) and let f :V x U — C a holomorphic function. Then

9(21, .y 2pn) = /aB( )f(f,zl,...zn)dé

is a holomorphic function on U.

Proof. Notice that if f were holomorphic on U x B.(zp), we would essentially be done. The idea is
to reduce it to an equivalent situation.

Since 0Bc(zp) is compact, for every § > 0, there exists finitely many &; such that {B;s(&;)} cover
0B:(2p). By choosing § small enough, we can ensure Bs(§;) € V and f has a convergent power
series in Bj(&;) x U; for all .

We can now split the integral into a finite sum of integrals where f has a power series expansion. []

Let us now focus on the extension problem.

Theorem 1.17 (Hartogs’ principle). Let Dr(0) and Dg/(0) be two polydiscs in C™ with Dg/(0) C
Dgr(0) so R; > R, for all i. Any holomorphic function f : Dr(0) \ Dr/(0) — C can be uniquely
extended to a holomorphic function f : Dp(0) — C.

Proof. Let w = (z2,...,2,) with |22] > R,. We can use the Cauchy formula for the function
z+ f(z,w), for R} <0 < Ry:

1 f(& w)
flz,w) = / d€
w) = om gl=s (£ —2)
The integrand is (£, z, w) {ég_f)) d¢, which is holomorphic on B.(d) x Bs_.(0) x Dg,,... r,(0) for
some small c¢. Therefore, by the lemma, the function
~ 1
f(Z,w _ f(é-?w) d€

270 Jigs (€ —2)

is holomorphic on Bs_.(0) X DR, ... r,, providing the desired extension by the identity principle. O



We conclude this subsection by proving two technical lemmas, due to Weierstrass, that will be
useful throughout the course. First, we need

Definition 1.18 (Weierstrass Polynomial). A Weierstrass polynomial in z; of degree d is a poly-
nomial
d d—1
21 +ar(w)zy + -+ ag(w),
where a;(z") are holomorphic functions in w = (za, ..., z,) defined in a neighbourhood of the origin
and such that a;(0,...,0) = 0.
Theorem 1.19 (Weierstrass Preparation Theorem). Let f : D.(0) — C with f(0,0) = 0 and

f(21,0,...,0) £ 0. Then for some smaller ball Do (0) there exists a unique decomposition:
f=g-h

where g is a Weierstrass polynomial in z1, and h : Do(0) — C is a holomorphic function without

ZETO0S.

Proof. By taking e; smaller if needed, we may assume f(z1,0,...,0) vanishes only at 0, with
multiplicity d. Moreover, choose r € (0,¢) and €9, ...,&, so that f(z1,w) # 0 for |z; — r| < € and
|w;| < &;, which exist by continuity and compactness.

For small w, the zeros of f,,(z) = f(z,w) are given by aj(w),...,aq(w). Define:
- i
g9(z,w) = [J(z1 — as(w)), h= J
i=1

We need to show that g and h are holomorphic in z; and w. Holomorphicity in z; is straightforward.
To see g is holomorphic in w, notice that this amounts to showing that the elementary symmetric
polynomials in terms of a;(w) are holomorphic, which are linear combinations of S = >, a;(w)*
for K =0,...,d. By the Cauchy residue formula EL we have

. ok L g O
D) =g | 9 L1os (F(& w)|de

which is holomorphic by Lemma Finally, we may write
1 h
€l=¢1

:% 5—21

which is everywhere holomorphic by Lemma and f/g being holomorphic on the annulus. [

Theorem 1.20 (Weierstrass Division Theorem). Let f € Ocn g, and let g be a Weierstrass poly-
nomial of degree d. Then there exist a unique h € Ocn g and r € Ogn-1 g[21] with degr < d such
that:

f=9g-h+r

_ b f(§w) dE
Az w) = 2mi /:935(0) g(§w) & — =2

and check that 7 = f — gh lies in Ogn-1[21] and is of degree < d holomorphicity. O

Proof. Define

1Check this formula by yourself, note that k = 0 is precisely the argument principle, giving the count of zeros
enclosed in the domain.



1.3 The ring of holomorphic germs O¢», and Hilbert’s Nullstellensatz

We study the local behaviour of holomorphic functions on an arbitrarily small neighbourhood of a

point. More formally, this leads to considering the notion of germs and stalks:

Definition 1.21. The holomorphic stalk at the origin, denoted Ocn g, is the set of all equivalence
classes of pairs (U, f), where U is an open neighbourhood of 0 in C" and f : U — C is a holomorphic
function.

Two pairs (U, f) and (V, g) are considered equivalent if there exists an open neighbourhood W C
U NV of 0 such that f and g agree on W:

(U, f) ~(V,g9) <= flw = g|w for some open W 3 0.

An equivalence class is called a holomorphic germ at 0.

Alternatively, one can think of the holomorphic stalk as the set of convergent power series inside
C[[Zl, ceey Zn]]

Exercise 1.22. Prove that this is indeed the case, i.e. there is a one-to-one correspondence between
convergent power series and holomorphic germs.

Remark 1.23. Definition might feel overly complicated and slightly unnatural. Indeed, stalks
and germs are better understood in the language of sheaves, which we will introduce in Section
The holomorphic stalk Ocn ¢ inherits a ring structure from that of holomorphic functions. We
devote ourselves to studying its structure. We shall prove
Theorem 1.24. The stalk of holomorphic germs Ocn o is

(i) a local ring,

(ii) a unique factorisation domain (UFD), and
(i1i) Noetherian.

Proof. (i) The ideal Zy given by (germs of) functions vanishing at the origin is maximal, with
residue field Ocn o/Zg = C. If f € Ocn satisfies f # 0, then one can show with little work
that f € O(E",Ov so there’s no other maximal ideal Z.

(ii) We prove this by induction. The case n = 0 is trivial.

Let f € Ocn o vanishing at the origin. By the Weierstrass Preparation Theorem we can
uniquely write f as f = u-p, with u € OF, , a unit and p € Oga-1[w] (the germ of) a
Weierstrass polynomial.

The O¢n-1 is a UFD by induction hypothesis, and so is Ogn-1 g[w] by Gauss’ lemma.

It remains to check that p is a finite irreducible element of Oc¢n o, which is straightforward
using the uniqueness of the decomposition of the Weierstrass Preparation Theorem [1.19

10



(iii) Again, we prove this by induction, with the case n = 0 being immediate.
Assume Ogn-1 is Noetherian, and therefore so is the subring Ogn-1[z1] € Ocn, by
Hilbert’s basis theorem.
Let I € Ocn o an ideal, so I N Ogn-1[21] is finitely generated.
Take f € I.By the Weierstrass Preparation T heorem we get f = gh with h € O¢. ; and
g € Ocn-1glz1], s0 g = fh! € TN Ogn-1 g[z1].

For any other f € I, the Weierstrass division theorem implies that f = gh + 7 for r €
Ogn-1g[z1]. Since f and g are in I, it follows that r € I N Ocn-1[z1]. Thus, I is a finitely
generated ideal.

O

We include one final lemma, for the sheaf of holomorphic stalks that will be useful in the future:

Lemma 1.25. Let f € Ocn irreducible. Then for e > 0 small enough f € Ocn , is irreducible
for all z € B.(0). Similarly, if f,g € Ocngo are coprime, they remain coprime in Ocn ., for all
z € B:(0) for e small enough.

Proof. We include the details for the proof of when f and g are coprime; the proof of irreducibility
follows the same logic.

By the Weierstrass Preparation Theorem [I[.19] we may assume f and g are Weierstrass polynomials.
Thus, they must be coprime as polynomials. By Gauss’ lemma, this means we can find polynomials
p1,p2 € Ogn-1g[z1] and 0 # h € Ogn-1 such that h = fp1 + gp2. The claim follows. O

Let us now define analytic sets and their germs. Given f : U — C a holomorphic function, we
denote its vanishing set as Z(f) = {z € U| f(z) = 0}.

Definition 1.26. An analytic set Z C X is a set such that for each x € Z, there exists an open
neighbourhood U > x and holomorphic functions fi, ..., fr € O(U) with

?
Z0U=Z(f1,....fx) =) 2(fi) .
=1

In the same spirit as before, we define the corresponding germs

Definition 1.27. An analytic germ at © € X is an equivalence class of analytic sets under the
relation Z; ~ Zy if Zy NU = Zy N U for some neighbourhood U > x.

Given a germ X at the origin, we denote by I(X) the set of homomorphic germs s satisfying the
condition X C Z(s). So Z(-) takes holomorphic germs (or functions) to analytic germs, and I(-)
takes analytic germs to their holomorphic counterparts. They satisfy the following relations:

Lemma 1.28.
(i) For any subset A C Ox ., Z(A) is a well-defined analytic germ with Z(A) = Z((A)oy.,)-

(11) For every analytic germ Z, I(Z) ={f € Ox 4 | Z C Z(f)} is an ideal.

11



(111) If X1 C Xg are analytic germ, then I(Xo) C I(X1). If I C I are ideals in Ox,, then
Z(IQ) C Z(Il)

(v) Z=2Z(1(Z)) and I C I(Z(1)).

(v) Z(I-J)=Z(1)UZ(J) and Z(I +J)=Z(I)NZ(J).
Proof. Exercise. O
The relation between holomorphic and analytic germs is made precise by Hilbert’s Nullstellensatz:

Theorem 1.29 (Hilbert’s Nullstellensatz Theorem). For any ideal I C Ox ,, we have:
VI =1(Z(D))
where /T is the radical ideal of I; I = {f € Ox, | f" € I for some n}.

We would like to understand the fundamental “building blocks” of holomorphic and analytic germs.
Since the holomorphic stalk naturally carries a ring structure, our focus will be on its prime ideals.
On the side of analytic germs, we introduce the following definition:

Definition 1.30. An analytic germ is Z called irreducible if for any union 7 = Z; U Zy with Z;
analytic germs, either Z = Z; or Z = Z,.

As expected, we have the following result
Lemma 1.31. An analytic germ Z is irreducible if and only if I(Z) is a prime ideal.

Proof. Let fifs € I. Then Z = (ZNZ(f1)) U(ZNZ(f2)). If Z is irreducible Z = Z N Z(f;), so f;
vanishes along Z, i.e. f; € I(Z).
The converse follows similarly. O

2 Complex and almost complex manifolds

We now introduce the main class of objects that we are interested in, complex manifolds. We will
give two definitions for them. First, using complex charts and holomorphic transition functions.
Second, we adopt a more differential geometric style, using GL(n, C)-structures, more commonly
known as almost complex structures on a real manifold. The two definitions are equivalent by
virtue of the celebrated Newlander-Nirenberg Theorem.

For the remainder of the notes, a (topological) manifold is a locally Euclidean, second-countable E],
Hausdorff space. Recall from differential geometry:

Definition 2.1. A C*-manifold is a topological manifold equipped with an atlas of charts (U;, #;)icr,

1

where transition functions ¢;; = ¢; o qu_ are C*-diffeomorphisms between open sets in R”.

2Sometimes
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Recall that C°-manifolds are topological manifolds, and that a theorem of Whitney tells us that a
Ck-manifold for k > 1 admits a compatible C*®-structure.

There is an intermediate notion between C° and C!, called PL:

Understanding when a manifold admits a smooth structure, and if so, how many, was an active
research area in the second half of the 20th century that is nowadays well understood (see e.g. Ker-
vaire-Milnor groups, Kirby—Siebenmann invariants, geometrisation conjecture) except in dimension
4, where surprising links to other areas of mathematics appear.

Another class (before I digress too much) is the class of affine manifolds, where the C* condition is
replaced by Aff(R™), requiring the transition maps to be affine maps of R”. Affine manifolds are
quite mysterious, and longstanding conjectures and open problems remain to be tackled.

Definition 2.2. A complex manifold is a manifold equipped with an atlas of charts (Uj, ¢;)icr,

1

where transition functions ¢;; = ¢; o (bj_ are biholomorphisms between open sets in C™.

To avoid issues and pathologies, we will always assume our atlases are maximal, i.e. they are not
a proper subset of any other atlas. Every atlas {(U;, ¢;) : i € I} is contained in a unique maximal
atlas: the set of all charts (U, ¢) compatible with (U;, ¢;) for all i € I, so there is no prejudice in
always taking the maximal atlas.

We will mostly refer to X as the complex manifold, omitting the atlas to lighten notation, as is
typically done in differential geometry. As in the previous case, we can ask the questions:

Question 2.3. When does a manifold M admit the structure of a complex manifold? Is the complex
structure unique? Can we classify complex manifolds up to biholomorphism?

In contrast to the smooth case, very little is known in this case, beyond some obvious topological
constraints, discussed in the exercises.

In the compact setting, some existence and classification results exist for complex dimensions 1
and 2. Already in dimension 3, we find one of the most (in)famous open problems in differential

geometry:
Question 2.4. Does the round 6-sphere S® admit the structure of a complex structure?

In the non-compact case, we have Liouville-type obstructions, so we know that the complex plane C"
is not biholomorphic to certain bounded domains (e.g. the unit ball or polydisc). However, there is
no high-dimensional analogue of the Uniformisation Theorem. In general, complex domains carry
intrinsic complex-analytic invariants that obstruct biholomorphism. For n > 1, many bounded
domains are not biholomorphically equivalent.

Definition 2.5. Let X be a complex manifold, and f : X — C a function. We call f holomorphic
if, for all charts (U, ¢) in the (maximal) atlas, f o ¢ is holomorphic in the sense of Section

Definition 2.6. Let X,Y be complex manifolds and f : X — Y a continuous function. The map
f is said to be holomorphic if for all charts (U, ¢) of X and (V,1) of Y, the map

plofog

is a holomorphic map in the sense of Section

13



Definition 2.7. Let X be a complex manifold of dimension n, and ¥ C X.

We say Y is an (embedded) complez submanifold of X of dimension k if for each y € Y there
exist an open neighbourhood U of y and local holomorphic coordinates (z1, ..., z,) on U such that
Y = Z(2k41y- -5 2n).

We will usually require Y to be closed in X. With the definition above, it is easy to see that

Proposition 2.8. A complex submanifold is a complex manifold such that the inclusion map vy :
Y — X 1is injective and holomorphic.

Conversely, a holomorphic map f : Y — X is called an embedding if it is injective, locally closed,
and with injective differential Df : T,)Y — Ty X for all y € Y. It follows easily that f is an
embedding if and only if f(Y) is a complex submanifold of X, biholomorphic to Y.

As in the smooth case, we can produce examples of complex submanifolds via the holomorphic

implicit function theorem:

Theorem 2.9. Let f: X — Y be a holomorphic map between complex manifolds of dimensions n
and m respectively, and let y € Y such that the differential Df, : T, X — T,)Y is surjective for all
z € f~(y). Then f~'(y) is a complex submanifold of dimension n —m.

A point y satisfying the conditions of the theorem above is called a regular point (or value, if
Y = C). We have

Corollary 2.10. Let f : C" — C be a holomorphic function and ¢ a reqular value, then Z(f —c) =

f~(e) is a complex hypersurface (complex submanifold) of complex codimension 1.

Unfortunately, one needs to work a bit harder if one is interested in finding examples of compact
complex submanifolds.

Exercise 2.11. The only compact complex submanifolds of C" (when considered as submanifolds

of C") are discrete points.

Let us introduce the first compact example, which will play a prominent role throughout the course.
The complex projective space CP" is the moduli space of complex lines (or dually hyperplanes) in
C"™*1. It can be realised as the quotient

CP" = (C"*1\ {0})/C",

where the C*-action is given by z — Az.
The complex projective space CP" is a compact n-dimensional complex manifold.
Let us define homogeneous coordinates [z, ..., z,] on CP". For i =0, ...,n, define a chart (U;, ¢;)

on CP" by U; = C" and ¢; : C"* — CP" given by
¢i : (’LUl,.. . ,’U)n) — [’Ll)l,.. . ,wi,l,wiﬂ,...,wn].
This is a homeomorphism with the open subset

¢i(U;) = {[z0,-..,2n] € CP": z; # 0} in CP".
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For 0 <i < j < n, the transition function ¢;; = qﬁj_l o ¢; is given by

@j:(C”\{zj:O}—HC”\{zi:O}

21 zi 1 zip1 Zj—1 Zj+1 Zn
(21""72")'—>(7,""’7,77_? R — ' 7,7)
Zj Zj Zj % Zj Zj Zj

The ¢;;’s are clearly biholomorphisms. So {(U;, ¢;)}i—o,... n+1 forms an atlas of CP", that extends
to the corresponding maximal atlas.
Now, we have the following example of complex submanifolds:

Proposition 2.12. Let p : C*"1\ {0} — C a homogeneous polynomial such that 0 is a regular

value of p, and consider
X ={[20,-..,2a] € CP"| (20,...,24) € Z(p)} .
Then X is a well-defined compact complex submanifold of CP".

Proof. X is well-defined, since p is homogeneous, so p(z) = 0 implies p(Az) = 0 for all A € C*.
Now, X is covered by the charts V; = (X N U;), where U; are the standard charts for CP" used

above. On each V;, X is described by the vanishing of p(zo,...,2i-1,1, 2i+1,- .. 2n), and Theorem
[2.9] concludes the proof. O

We give two examples:

Example 2.13. For d € N, the set X = (zg + zii + zg) C CP? is a Riemann surface of genus
_ (d-1)(d-2)
9="2 -

Example 2.14. The setY = Z(22+---+22) C CP? is a projective complex manifold biholomorphic,
CP! x CP.
Of course, one may ask how general the condition for 0 to be a regular value of a homogeneous

polynomial. We leave it as an exercise to show that
Exercise 2.15. The set of homogeneous polynomials for which 0 is a reqular value is generic.
More generally, one has

Proposition 2.16. Let (py,...px) : C*T1\ {0} — C* a collection of homogeneous polynomials such
that (0,...,0) is a reqular value. Then (Z(p1) N---N Z(py))/C* C CP" is a complex submanifold

of dimension n — k, called a complete intersection.

More generally, a projective variety is a subset X of CP™ which is locally defined by the vanishing
of finitely many homogeneous polynomials.

Projective complex manifolds allow us to consider a large number of examples of complex manifolds.
Moreover, since they are defined using polynomials, they can be studied using algebraic techniques,
giving rise to complex algebraic geometry.

In the opposite direction, one may consider under what conditions one can guarantee that a compact
complex manifold X can be realised as a projective complex manifold. The answer to this question
is fully understood and follows from two important results, Chow’s Theorem and the Kodaira
Embedding Theorem, which we will prove during this course.

Complex Lie groups also provide important examples of complex manifolds:
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Definition 2.17. A complex Lie group is a group G that is also a complex manifold such that

multiplication and inversion are holomorphic maps.

Examples include the general linear groups GL,(C), special linear groups SL,(C), complex tori,
ete.

Proposition 2.18. Let G be a complex Lie group acting holomorphically on a compler manifold
X. If the action is free and proper, then the quotient X/G carries a canonical complex manifold

structure for which the projection X — X/G is a holomorphic submersion.

Proof. See [Wel08, Prop. 5.3]. O

As a direct application of this proposition, we give two further examples of complex manifolds:
Hopf and Iwasawa manifolds.

Hopf manifolds are examples of compact complex manifolds obtained as quotients of C™\ {0} by a
discrete group generated by contractions. For a concrete example, let a € (0,1) and

Ha=(C"\{0})/ ~a

where z ~, w if z = o™ w for some n.

Remark 2.19. Hopf manifolds are diffeomorphic to $?"~! x S! (think in polar coordinates) and
provide important examples in complex geometry, as we shall see.

Finally consider U C GL(3,C) the subgroup of upper-triangular matrices

1 Z1 R2
U=10 1 z3
0 0 1

and its subgroup Uz = UNGL(3, Z[i]). The group Uy acts by translations (wy, we, ws3)- (21, 22, 23) —
(21 + w1, 22 + wa, z3 +ws), which is a free and proper action, so the quotient is a complex manifold,
known as the Iwasawa manifold I = U/Uy.

The first and third coordinate provide a holomorphic submersion f : I — C/Z[i] x C/Z][i], with the
fibres given by the remaining coordinate, biholomorphic to C/Z[i].

2.1 Almost complex structures

We now introduce the second definition of complex manifolds, via almost complex structures. The
idea is to consider a weaker notion of complex structures and study the relation between the two.
The idea is the following: Let X be a complex n-manifold in the sense of Definition Then, the
underlying topological manifold carries a natural smooth real 2n-manifold Xg. Its tangent bundle
T X inherits the structure of a complex vector bundle, which is reflected in the existence of a
bundle endomorphism J € C*°(End(7TXg) such that J? = —1Idy, fiberwise. This motivates the

notion of an almost complex structure:

Definition 2.20. Let X be a real 2n-manifold. An almost complex structure J on X is the choice
of a section J in C>°(End(T'Xg)) satisfying the condition J? = —Ida,.
A manifold X equipped with an almost complex structure J is called an almost complex manifold.
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Any complex manifold in the sense of Definition induces a real manifold X with an almost
complex structure J. The converse is not true, as we shall see.

Since an almost complex structure J furnishes the tangent space with the structure of a complex
vector space pointwise, we can define the analogue notions of holomorphic functions and maps.

Definition 2.21. Let (X, J) be an almost complex manifold and f : X — C a smooth function.
We say f is J-holomorphic function if

df o J =idf .
Similarly, we have

Definition 2.22. Let (X,I) and (Y, J) be almost complex manifolds and f : X — Y a smooth
map. We say f is a pseudo-holomorphic map if

df ol = Jodf .

Before proceeding, let us say a few words about the existence of almost complex structures.

Unlike the case of complex strucutres, we are not requiring that our structure solves any PDEs (the
transition maps being holomorphic), just the existence of a special section of the endomorphism
bundle End(T'M) (or the reduction of the frame bundle to a principal GL(n,C)-bundle). This
problem is well-understood from the point of view of classifying spaces, and it allows us to phrase
necessary and sufficient conditions for the existence of an almost complex structure in terms of very

explicit topological conditions in low dimensions:
Proposition 2.23. Let M?" be a closed manifold

(i) For n = 1, M admits an almost complex structure if and only if M is orientable (equiv.
w1 (M) =0).

(i) For n =2, M admits an almost complex structure if and only if M is orientable and there
exists h € H?(M,Z) such that

h? = 30(X) + 2x(X) h =2 wo(X) .

We refer the interested reader to [MS74) §12] for an introductory discussion on obstruction theory
on vector bundles.

2.2 The exterior differential and the Nijenhuis tensor

Let us now explore the geometry of almost complex manifolds. For the remainder of the section
(X™,J) will denote an almost complex manifold of (complex) dimension n.

Lemma 2.24. The complezified tangent bundle T X¢ = T X ®Qr C splits as a direct sum of complex
bundles TX'0 @ TX% of complex dimension n, given by

TX"0 = ker (i1d —J) TX% = ker (i Id +.J)
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Proof. The minimal polynomial of J is 2 — 1 = (z — 4)(x + i), which means J is diagonalisable
over C. The bundles TX"? and TX%! are the corresponding eigenbundles O

Remark 2.25. While TX 50 and TX%! are not in general isomorphic as complex bundles, they are

always isomorphic as real bundles, with the isomorphism given by conjugation.

The decomposition of the complexified tangent bundle into holomorphic and anti-holomorphic parts
trickles down into all associated vector bundles. In particular, we have the following decomposition

of exterior k-forms:
k P p.aq P q
p+q=k

We denote the space of smooth sections of AP!T*M by A4 =T'(X, AP1T*M).

There is a more abstract way of understanding this decomposition. An almost complex carry a
reductio of the structure group GL(n,C) C GL(2n,R), and the decomposition of k- forms into
(p, q)-forms corresponds to decomposition of AF(R?*")* @ C into irreducible representations of
GL(n,C).

We can study how the exterior differential behaves with respect to this decomposition. We have

the following:

Proposition 2.26. There exists operators 0 : AP4 — APYLL and g 2 AP9 — APT24=1 sych that

the exterior differential d decomposes as
d=pu+0+0+7,
with @ and Ti are the conjugate operators to O and . respectively.

Proof. The exterior differential d is a local operator. Any (p, ¢)-form « can be written down locally

as

with {a1,...,a,} a local basis of A0, O
Lemma 2.27. The operators 0 and p satisfy the following properties:
(i) the Leibniz rule,
(ii) O is C-linear and p is function linear, and
(iii) the following identities hold:
1o+ 0 =10, O+ 0pu+pd=0,

u=0, it + 00 + 00 + i =0 .

Proof. Exercise. O
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Since p is function-linear, we can identify the operator p acting on (0,1)-forms with a tensor
Ny € I'(X,Hom(T* X%, N? T*X"9)) such that pu(a) = —Ny(a) for a € A%
The tensor N is known as the Nijenhuis tensor and will play a key role in our discussion. Under
the canonical identification Hom(T* X%, A2 T*X1:0) = A2 T*X10 @ TX%! we can view Ny as a
skew-symmetric map

Ny :TXYWx7x0 o 7x01

Lemma 2.28. Under the identification above, the Nijenhuis tensor is given by
NJ(Xv Y) = ([Xv Y])OJ :

Proof. Let a be a (0,1)-form and X, Y J-holomorphic vector fields. By the definition of y and N,
we have that (N;(a))(X,Y) = —da(X,Y).

Now, we can expand the right-hand side using the usual formula da(X,Y) = Xa(Y) - Ya(X) —
a([X,Y]). The terms a(X) and «(Y) by bidegree reasons, and «([X,Y]) only depends on the
(0, 1)-part of the Lie bracket since « is a (0, 1)-form. O

Exercise 2.29. The usual definition of the Nijenhuis is

N;(X,)Y)=[X, Y]+ J(JX, Y]+ [X,JY]) - [JX,JY].
Prove that the two definitions are equivalent (up to complezification and conjugation).
All in all, we have almost proved the following:
Proposition 2.30. On an almost complex manifold, the following are equivalent:
(i) p=0,
(ii) The subbundle TX"C is involutive,
(iii) 0% = 0.
Proof. The equivalence between (i) and (i) follows from Lemma Item (i) implies (iii) by
Lemma Thus, we only need to show that (iii) implies (7).
It suffices to show that df([X,Y]) = 0 for a function f and X,Y € TX"°. Now, we have
0=02%f(X,Y) = (dOf)(X,Y) = X(0f (V) = Y(9f (X)) = f([X,Y))
= X(df(Y)) =Y (df (X)) = 9f([X, Y]) = df ([X,Y]) = 9 ([X, Y])
—AF(X,Y]). =

An almost complex structure is called integrable if any of the above conditions is satisfied, motivated

by the following computation:

Lemma 2.31. Let (X,J) be a complex manifold. Then Nj = 0.
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Proof. Let {z1,..., 2y} belocal holomorphic coordinates. Then {dz1,...,dz,} is (pointwise) a basis
for T* X190, In particular any o € A0 can be locally written as

o= kadzk ;
k=1

In particular, we have

n

Ofk Ok

da = Z (azjdzj + a—zijdzj Adzy . O
k=1

So the vanishing of the Nijenhuis tensor is a necessary condition for (X, J) to be a complex manifold.

In fact, it is also sufficient:

Theorem 2.32 (Newlander-Nirenberg). An almost complex manifold (X, J) admits a compatible

complex structure if and only if the almost complex structure J is integrable, i.e. Ny =0

The proof of the Newlander—Nirenberg amounts to constructing local J-holomorphic coordinates.
The details of the proof are relatively technical and involved; therefore, we will skip them. You can
find a complete proof in [Dem12]

Therefore, one could define a complex manifold as a manifold equipped with an integrable almost
complex structure.

Remark 2.33. In fact, one can take a more systematic approach to these questions from the point of
view of G-structures. In that framework, the existence of an almost complex structure corresponds
to a reduction of the frame bundle to a principal GL(n,C)-bundle, the vanishing of the Nijenhuis
tensor corresponds to the structure being 1-integrable, and the Newlander-Nirenberg theorem says
that there are no further obstructions from being 1-integrable to being integrable.

We will (hopefully) revisit the world of G-structures when we discuss the Ké&hler condition in
Section Rl

A straightforward application of the Newlander-Nirenberg is the following:

Corollary 2.34. Let v : Z — X be an almost compler submanifold of a complex manifold. Then

Z is a complex submanifold of X

2.3 Cohomologies in complex manifolds

As part of our discussion, we saw that (almost) complex manifolds carry natural operators that
square to 0. In particular, this allows us to consider new cohomology theories for these operators.

Remark 2.35. The case of almost complex manifolds is not particularly amenable to having a good
cohomology theory since the operator p is of order 0, so cohomology groups will contain little
interesting information. However, one can take this further to produce an interesting cohomology
theory, but more elaborate tools are needed to realise this; see [CW21] for further details.

From now on, we restrict ourselves to the case of complex manifolds. Recall that, since d> = 0 and
d = 0 + 0 on a complex manifold, we have 9% = 9 =00 + 00 = 0. We can define four different
cohomology theories on X:
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Definition 2.36. Let (X, J) be a complex manifold.

e The Dolbeault cohomology

) = ker (0 : APU(X) — APITL(X))
)= i (@ A1 (X) > (X))

e The de Rham cohomology

~ ker (d: AF(X) - AM(X))
Hjp(X) = im (d : AF1(X) = AF(X))

item The Bott—Chern cohomology

kerd N kerd\"?
N

im 99

e The Aeppli cohomology

H29(X) :< ker 90 )p’q.
imd + imad

These are all well-defined, and there are canonical inclusion maps between the different cohomolo-

gies, induced by inclusion and projection:

Hpe(X)

N

Hp(X) Hij'(X) HE(X)

~ ]

H*(X)

where H g’q(X ) are defined analogously to the Dolbeault cohomology groups, and conjugation yields
the isomorphisms H}7 = @.

We conclude this section by computing the Dolbeault cohomology groups Hg’q on a polydisc D, C
C", for e = (e1,...,ep), with g; = 0o allowed. First, we need

Lemma 2.37 (Baby 0-Poincaré Lemma). Let U C C be an open set containing the closed ball B..
For any a = fdz € A%Y(U), the function

1 (w)

2 B. W— 2

dw N dw

satisfies o = Og on Be.

Proof. Let us prove that a = 0g in a neighbourhood V of zg € B.. Take % a bump function such
that ¥y = 1 and supp(v)) C Be, and consider the decomposition f = ¢ f + (1 —¥)f = fi + fo,
and the induced one for g. Let us check that g1 is a well-defined smooth function. Since f; has

21



compact support, we can extend it to the entire complex plane, and by the change of coordinates

w = z + re'?, we have

1 fi(w)

21 Jp. w— 2

(edr + ire'®dp) A (e~ Pdr — ire~"dg)
ret®

1 .
— i
dw N\ dw 2m,/(cf(z—|—7"e )
1 : .
= /f(z+re’¢)e_z¢d¢/\dr,
TJc

which is clearly smooth in B.

All that remains is to compute dg. Since ﬁ is holomorphic in the complement of V', it follows
from differentiation under the integral sign that dgo = 0. For g, using the expression above, we
have

0g1 = 18/ f(z+re)edp A dr
T Jc

C

T ow 0z ow 0z
1 Of _io 1 of dw A dw
=— | —eWdpNdr = — | ==————
T oAdr 2mi Jp 0w w — z
= f(2),

where the second line follows from the chain rule from Lemma [1.3] we undid the change of variables
in the third line, and the fourth line follows by the (general) Cauchy Integral Formula, Equation

(3)- o
By induction on the dimension and bidegree, one shows

Lemma 2.38 (0-Poincaré lemma). Let U C C™ be an open set containing the closed polydisc De.
For q > 0, if a € AP4(U) is O-closed, there exists § € AP4~1(D.) such that oo = 9B on the polydisc.

Proof. See [Huy05, Prop. 1.3.8]. O
We can now prove the Dolbeault—Grothendieck lemma:

Proposition 2.39. Let D, be a polydisc in C". Then

holomorphic (p-forms) ¢q¢=0,
9 0 q¢>0.

Proof. The idea is to exhaust the polydisc D, by a sequence of approximating polydiscs D,,, and
show that we can choose the approximating exact terms so that they do not change inside the
smaller polydisc.

If ¢ > 1, the difference 8; — B;—1 will then be O-closed, so by the d-Poincaré lemma, we can choose
7; such that 9y = 3; — B;_1. Take ) a bump function supported on D, with )| p., = 1 and set
qu+1 = Biy1 + 0(¢y). The sequence Bl has the desired properties. The case ¢ = 1 follows a similar
idea, where now 0 is replaced by a suitable holomorphic polynomial. Full details can be found in
[Huy05|, Cor. 1.3.9]. O
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3 Sheaves and their cohomologies

We now introduce the language and techniques of sheaf theory. While we will not use them to their
fullest extent, they are a convenient tool for presenting and proving some of our results, especially
when considering cohomology and vector bundles. A more detailed discussion can be found in
[Wel08] and references therein. For a more thorough and comprehensive discussion using derived
functors, we refer the reader to [Har77, §3].

Definition 3.1. A presheaf F of abelian groups on a topological space X is given by:
(i) For every open set U C X, an abelian group F(U)
(ii) For every inclusion V' C U, a group morphism F(U) — F(V) (restriction map)
such that ryy =id and ryw oryy = rgw for W CV CU.

Definition 3.2. A presheaf is called a sheaf if for every family of sections s; € F(U;), i € I, with
silu,nu; = sjluinu;, there exists a unique section s € F(U) such that s[y, = s;.
Equivalently, the sequence:

0= F(U) = [[FW:) = [[FW:inU;)
i i\j
is exact, where the second map is (s;) = (silv;nv; — sjlvinu;)-

We can now give a (perhaps) more intuitive definition of a stalk as a direct limit of a presheaf.

Definition 3.3. The stalk of a presheaf F at z € X is:

Foi=1lim F(U) = | ] F(U)/ ~

zeU relU
where sy ~ sy if sy|lw = sy|w for some z € W CUNV.
Associated with a presheaf, we have an associated topological space:

Definition 3.4. For a presheaf F, define its Etale space:

Et(f) = U Fe B X with p_l(x) = Fs
zeX

The sets [U, s] = {s, | 2 € U} for U open and s € F(U), form a basis for a topology on Et(F), and
p is a local homeomorphism.
The sheafificationF ™ of a presheaf F is defined by:

FH(U) ={s:U — Et(F) | s is a continuous section}

There is a natural map F(U) — FT(U) compatible with restrictions. If F is a sheaf, this map is

an isomorphism.

An easy (but important) example is that of the constant presheaf and the locally constant sheaf:
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Example 3.5. If F" is the constant presheaf with F™'(U) = A, then:

E’vt(]:const) - X x Adisc (fconst)—i- A
Given a morphism of sheaves, we can study the associated kernel and image. First, we have
Lemma 3.6. Let ¢ : F — G be a morphism of sheaves. Then the presheaf ker ¢ is a sheaf.

Proof. To prove that ker ¢ is a sheaf, we need to prove that, for Uopen and {U;} an open cover of

U, we have
(i) (Existence) if s; € ker ¢(U;) such that s;|y,nv; = sjlu,nu;, then there exists s € ker p(U) such
that s|y, = s; for all i;
(ii) (Uniqueness) if s € ker (U) and s|y, = 0, then s = 0.

To show (i), notice that the candidate s exists in F(U) since F is a sheaf. Thus, we only need
to show that s € ker p(U). Indeed, ¢(s;) = 0 by hypothesis, and since G is also a sheaf, this glue
together to show that ¢(s) = 0, as needed. Uniqueness follows readily since F is a sheaf. 0

In general, however the presheaves U +— im ¢y and U — coker ¢ are not sheaves. For instance,
one may consider the image presheaf of the exponential map exp : Oc — Of. Then, for an open
set U, exp(U) is the ring of holomorphic functions on U with a well-defined logarithm. But taking
Uy =C\{z >0} and Uz = C\ {x < 0} suffices to see that the image presheaf is not a sheaf, as
there is no logarithm defined in C\ {0}.

Definition 3.7. For a morphism ¢ : F — G of sheaves, we define:
e The image sheaf: im p := (U — im py)™*
e The cokernel sheaf: coker p := (U + coker py)*t

A sequence F RN g i> H is called exact at G if kervy = im .
Similarly, we say the morphism ¢ is injective if 0 — F > G is exact; and surjective if F 2 G — 0

is exact.

We have the following useful characterisation of exactness:

Lemma 3.8. The sequence F LN g ﬂ H is exact iff Fu LEN Gy h Hz is exact for all z € X.
Proof. Exercise. O

The following sequences are examples of exact sequences:

0—)0@%0@—)8@(]0)—)0

2mi ex
025 0x 25 0% =0
d
02C—A%ec > Axec— .-
D p0 9. 4pl
0= Qy > Ay = Ayec— -

0—-7,— Ox = Sx(p) =0

where
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Oyx is the sheaf of holomorphic functions on X,

A%« (vesp. ARY.) is the sheaf of smooth sections of A¥T*X (resp. \PIT*X),

Ty is the sheaf of vanishing holomorphic functions on a complex submanifold, ¥ C X
Iy(U) = {f € Ox(U) ’ f‘y = 0}
e Sx(0) is the skyscraper sheaf, defined as

C if peU

Sx(p)(U) = ,
0  otherwise

, The reader is encouraged to go through these examples in detail and verify that they are exact
sequences of sheaves, as they will appear repeatedly throughout the course.
Given a continuous map f : X — Y between topological spaces, we get induced maps on sheaves

on them.
Definition 3.9. Let f: X — Y a continuous map, F a sheaf on X and G a sheaf on Y.
e The direct image sheaf of F is defined as f. F(U) = F(f~1(U)) for U C Y.

e The inverse image sheaf of G is defined as f~1G(U) = f(g])aévg(V), where the direct limit

runs over all open subsets V of Y that contain f(U).

One needs to check that the definitions are indeed well-posed, i.e. that the presheaves defined above
are indeed sheaves; but we omit that.
The direct and inverse image sheaves satisfy some nice properties:

Lemma 3.10. Let f : X =Y and g: Y — Z be continuous maps. Then,
® guofi=(g90f)an flog Tt =(g90f)7",
o 1 is evact (i.e. it preserves evactness),
e f. and f~! are adjoint to each other: Hom(f1F,G) = Hom(F, f.G).

Lemma 3.11. Consider: Z — X a continuous embedding, and F a sheaf on X. Let F|z = 1= F.
Then,

o if Z ={z} is a point, F|z = Fy,
o if Z is closed, F(Z) = Flz(Z), and
o if Z is open, F|z(V)=F(ZNV).

We omit the proofs of these lemmas. Finally, for completeness, we introduce the following definitions
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Definition 3.12. A ringed space is a pair (X, R) where R is a sheaf of rings on X.
A morphism of ringed spaces (X,R) — (Y,S) is a continuous map f : X — Y together with a
morphism of sheaves of rings f~1S — R.

Definition 3.13. Let (X, R) be a ringed space. A sheaf of R-modules is a sheaf of abelian groups
M with a map R x M — M such that M(U) is an R(U)-module for all open U.

Examples of ringed spaces are smooth manifolds, with R = C¥ (= .A%R), and complex manifolds,
with R = Ox. Examples of R-modules are discussed in the exercises.
3.1 Sheaf cohomology

Let us now discuss the issue of exactness (or rather its failure). We saw (or rather left as an
exercise) that taking stalks is an exact operation. More generally, we have

Lemma 3.14. Let
0O—=+F—=G—-+H—=0

be a short exact sequence of sheaves. Then, for any U, we have
0= FU)—GU)—HU)
Proof. O

In general, we lose exactness on the right, as exemplified by the fact that the exponential map
exp : Oc — OF is not surjective when evaluated over U = C \ {0}.

Cohomology is then introduced as a measure of failure for right-exactness. The correct way to
understand sheaf cohomology is via the theory of derived functors, which is unfortunately beyond
the scope of this course. Instead, we will present an ad-hoc construction for it.

Definition 3.15. A sheaf T is injective if for any injection A <— B and map A — Z, there exists

a map B — Z making the diagram commute.

A—— B

\ |

I
Definition 3.16. A complex of sheaves is a sequence:
ey FEL L F L el

A resolution of a sheaf F is a complex F*® with a map F < FU that is exact. An injective resolution

is a resolution where all Z* are injective.

Definition 3.17. The sheaf cohomology is defined as:
H'(X,F):=H'(I'(X,1°)

for an injective resolution F — Z°.
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Notice that, in particular H(X, F) = I'(X, F) = F(X). A priori, this definition is subject to the
existence of injective resolutions and a choice thereof. Fortunately, we have:

Proposition 3.18.
(i) Every sheaf F admits an injective resolution. (The category of sheaves has enough injectives.)

(ii) For a morphism of sheaves ¢ : F — G and injective resolutions Z® and J* of F and G, there
exist <pk cTF — TF such that

0 F 70 7! 72
lso Lpo lsol LPQ
0 g J° J! J?

commutes. Moreover, any choice of maps {¢*} induces the same maps on cohomology.
(iii) Injective sheaves are flabby, i.e. the map F(U) — F(V) is surjective for any V- C U open.

(w) If
O=+F—=G—H—=0

is exact and F is flabby, then
0—FU)—=GU)—HU)—0
for all open subsets U.
In particular, this implies that the sheaf cohomology groups are well-defined, and we have

Theorem 3.19. Consider the short exact sequence of sheaves
0=+F—=G—H—=0.
Then there exists a long exact sequence of cohomology:
0— H'(X,F)— H'(X,G) » H'(X,H) - H'(X,F) - H'(X,G) - HY(X,H) — H*(X,F) — ...
15 exact

Proof. Use the fact that the injective resolution is flabby, along with the snake lemma/ diagram
chasing, to construct the connecting morphisms. O

Whilst injective sheaves and injective resolutions are convenient to define sheaf cohomology, they
tend to be quite cumbersome and hard to construct in explicit situations. Instead, it is more

convenient to work with acyclic sheaves and resolutions

Definition 3.20. A sheaf A is acyclic if H'(X,A) = 0 for i > 0. An acyclic resolution is a
resolution A® by acyclic sheaves A’.
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The following result captures the convenience of working with acyclic resolution.

Theorem 3.21. Let A® be an acyclic resolution of F, then:
HY(X,F) = H(I'(X, A*))
Proof. Split the resolution into short exact sequences:
0— K — A" — Kt =0

with K’ := ker (Ai — Ai“) >~ im (Ai_l — Ai) .. The long exact sequence of cohomology yields the
desired result. O

Exercise 3.22. Write down the missing details of the proof above.
We now claim a fact that will be of great importance, but we do not have the time to prove it:
Theorem 3.23. All sheaves of Ag-modules are acyclic.

The proof of the theorem relies on constructing a particular type of acyclic sheaves called soft, via
a partition of unity on X. This dependence on the existence of a partition of unity is key in the
construction.

As a corollary of this fact, we have

Corollary 3.24. Let X be a smooth manifold. Then
HEp(X,R) = H¥(X,R) .
Similarly, on a complexr manifold, we have
Pq ~ 74 P
H5 (X)= HY(X,QP)

Proof. The smooth Poincaré lemma implies that the locally constant sheaf R admits the acyclic
resolution

d d d
Sr= 0 A%r 5 Axgr > Axr > ...

Similarly, the O-Poincaré lemma implies that sheaf of holomorphic p-forms admits the acyclic
resolution B B B
. p0 O pl O 2 0
Ayr= 02 Ay > Ay = AR — -

3.2 Cech cohomology

We now introduce another, more combinatorial, cohomology theory for sheaves. Whilst it is more
”hands-on” and computationally easy to work with, one does not have all the good properties of

sheaf cohomology ”on the nose”.

Definition 3.25. Let F be a sheaf on X and & ={U; }icr an open cover. For each o = (ig,...,%q) €
19+ consider U, = Uy, N... Ui, and 1o : U, < X the inclusion.
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(i) The sheaf of Cech chains with respect to the cover U is:

ClUF)= ] (to)elto)'F

oelatl

(ii) The Cech boundary operator is:

§:CIU,F) — CT U, F)
q+1

A (tedious) computation shows that 6% = 0, so (C4(U,F),d) is a complex of sheaves. In particular,
we can define the (relative) Cech cohomology groups:

) ker (cq(u,f) 9, cq+1(u,f))
HYU,F) =

im (qul(u, F) % cau, f)) '
In degree zero, we have

wu.F) =[[Fu) > [ Fwinu;) =c'w,F)
U; UinU;

with 0(s)i; = sjlv,nu; — silu;nu;- Since F is a sheaf, HOU,F) =ker6 = H*(X,F). However, the
higher cohomology groups will depend on the chosen cover. To remedy this, we define

Definition 3.26. Let X be a topological space and F a sheaf. We define the Cech cohomology

groups as
HY(X,F)= lim HIYU,F),

U cover

where the direct limit is taken over finer and finer covers.
The result that ties up all the discussion is a celebrated result due to Leray:

Theorem 3.27 (Leray’s theorem). : Let X be a smooth manifold. There is an isomorphism:
HY(X,F)~ HY(X,F)

The main idea is to consider a good cover of X, that is, an open cover in which all open sets and
all non-empty intersections of finitely many of them are contractible, and then choosing a partition
of unity subordinate to this open cover.

I have been particularly vague and stated many (deep and hard) results at face value, which the
reader should be pretty unhappy about (I know I am). Unfortunately, I find it the lesser of all
evils, as proceeding in our discussion without the tools of sheaf theory and its cohomologies would
prove nearly impossible. However, establishing and discussing all the material summarised in this

section in detail could take an entire course on its own.
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4 Meromorphic functions and Siegel’s theorem

Let us put together some of the results from the previous sections. In Theorem we saw that
the stalk Ox , (equivalently Ocn o) is an integral domain since it is a UFD, as proved in Theorem
So one may consider the corresponding field of fractions Kx , := Quot(Ox ). Consider the
following space
Et(Kx) = |J Ks |
zeX
with the topology induced by that of the étale space of Ox, and define the following sheaf:

Definition 4.1. The sheaf of meromorphic functions on a complex manifold X is defined as

Kx(U) = {s U — Et(lCX)‘ s is continuous and po s = idU} ,

with p : Et(IC x) — X the obvious projection. A meromorphic function is a section of this sheaf.

Note that we have chosen very suggestive notation from the start, and we are treating Et(IC X) as
an étale space, and constructed the sheaf out of it as we did for the sheafification of a presheaf.
This procedure is quite general and does not use any intrinsic properties of holomorphic functions.
Indeed, this can be applied to any ringed space (X,R) as long as the stalks of R are integral
domains. The resulting construction is called the sheaf of rational functions.

Remark 4.2. Note that one might want to abuse notation and write Kx = Quot(Ox). However,
Quot ((’) x (U )) makes no sense for any open U that is not connected, since Ox(U) will not be an

integral domain.

Let us study the sheaf of meromorphic functions. First, notice that if X is connected, Kx(X) is a
field, and we have an injective map of sheaves 0 — Ox = Ky with ¢(f) = {
Since meromorphic functions are continuous sections s : X — Et(ICX), we have the following

characterization:

Lemma 4.3. Let f € Kx(U). Then, for every x € U there exists an open neighbourhood V' and
holomorphic functions g,h € Ox (V') such that the stalks g, and h, are coprime and f, = Z—Z for
all y € V.. Moreover, g and h are unique, up to units in Ox (V).

Proof. Combine the definition of meromorphic functions using the topology of Et(Kx) (and thus
that of Et(Oy)) with the fact that Ox_, is a UFD and Lemma m O

In particular, for any meromorphic function f € Kx(U), we can define the following two analytic
sets:

Z(f) = {meU\ fo= 22

xT

ol =0} e

, h(z)= 0}

x

Notice that when f is actually holomorphic, the definition of Z(f) agrees with our previous defi-
nition Z(f) = f71(0). In fact, a moment’s thought suffices to notice that the sets Z(f) and P(f)
are disjoint, and that f[;n p(s) is holomorphic.

We know that, on a compact connected complex manifold, the ring of holomorphic functions is
always just C. Let us now study how ”"big” the field of meromorphic functions can be. Recall from

your algebra course
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Definition 4.4. Let K be a field and L a field extension over K. We say that a collection
{li,...,lx} C L is transcendentally independent if ¢(l1,...,lx) # 0 for all polynomials ¢ €
Klxy,...,zx] .

The transcendence degree of the extension L|K is defined as

tr. degy (L) = sup {k‘ ’ 3 11,... 1l transcendentally independent over K}
k

We have

Theorem 4.5 (Siegel’s theorem). Let X be a compact connected complex manifold of dimension
n. Then tr.dege (Kx (X)) < n.

Before we can prove this, we need the following lemma;:

Lemma 4.6 (Schwarz lemma). Let ¢ > 0 and f : B:(0) — C a holomorphic function with a zero

of order k at 0. Then
2]
<
7(2) C<s ,

Proof. Fix 0 # z € D.(0) and consider the function

where C' = sup |f|.
9D¢(0)

F,: B.(0) » C

ws w R <wz> ,
2|

which is holomorphic since f has a zero of order k. On 9B.(0), we have |F,| < Ce™*. By the
maximum principle, the same bound holds for all w € B.(0). Thus, taking w = |z|, we have

|Fa(21)] = |2| *If(2)] < Ce™F. O

Proof of Siegel’s theorem. The goal is to prove that for all fi,..., frr1 € Kx(X), there exists a
polynomial P € K|[z1,...,2y+1] such that P(f1,..., fa+1) = 0.

e Step 0: Let z € X, so there exists an open neighbourhood U and g1,. .., gny1,h1,. .., hny1 €
O(U) such that fi|y = = for all i € {1,...,n + 1}. Moreover, we can assume that g; and h;
are coprime by taking a smaller nelghbourhood if necessary, by Lemma [1.25

Take coordinate charts around z, and consider V; C U the image of the ball of radius 1/2
under the chosen chart. Since X is compact, we can find points z1,...,2zx such that the
family {V}} is an open cover of X.

For two neighbourhoods, Uy, and Uj, denote ¢y; = le” € O*(UpNU;), and set

n+1

I éwei(2)

=1

C =max sup
bl ey

Notice that the relation ¢y ;(2)¢i,i(2) = 1 implies C' > 1.
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e Step 1: There exists a polynomial P of degree m such that

Gr=P(f1,--- fat1) (H hi,k>m

is holomorphic on Uy and vanishes at z; with order M for all k € {1,... N}.

Indeed, G}, is clearly holomorphic. The condition that Gj vanishes at order M is equivalent
to 0“Gy, = 0, where 0¢ :
multindex of size M.

= &Zlal‘?‘% is the differential operator, and o = (a1, ..., ) is a

M—l—l—n) )

" Since the space of

The collection of operators 0% spans a space of dimension (

polynomials of degree m has dimension (mt;lﬂ), it suffices to choose m large enough so

(m+n+1>>N<M—1+n>_ (©)
m n
e Step 2: By the Schwarz Lemma we have

C
Gh(2)| < o7

for z € Vi and D = maxy, sup, v |Gk (2)|. The goal is to show that D = 0 for an appropriate
choice of m and M.

e Step 3: Let z € Uy, such that |Gg(z)| = D. Thus, for some [ € {1,...,N} z € V; and so

Cm
D =G(2)| = |Gi(2)] |9k (2)] < 557 D -
Thus, the constant D will vanish whenever
mlogy(C) < M . (7)

e Step 4: For suitably chosen m and M, the conditions @ and can be satisfied simultane-
ously, so D = 0.

M—14n
M-1

degree n in M. Notice that this is the crucial step for which we need to take the polynomial

Indeed, since (m+£+1) is a polynomial of degree n + 1 in m and ( ) is a polynomial of

in n + 1 variables.

In view of Siegel’s result, we see that the following definition makes sense:

Definition 4.7. The algebraic dimension of a compact connected complex manifold X is
a(X) = tr.dege (Kx (X)) .
As a first computation of the algebraic dimension, we have:

Proposition 4.8. For all n € N, we have a(CP") = n.
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Proof. By Siegel’s theorem, it suffices to show that a(CP") > n. Let [Zy : --- : Z,] denote
homogeneous coordinates on CP" and C(&q,...,&,) the field of rational functions. The map

®:C(&,. .., &) = Kepn (CPY)

is well-defined, so C(&1,...,&,) C Kcpr (CP™). O

This proves that the field extension Kcpr (CP™)|C(&1,...,&,) is algebraic. It is not hard to prove
that, in fact, C(&1,...,&,) = Kepr, but we leave it as an exercise to the reader.

5 Holomorphic bundles and Kodaira dimension

Recall the definition of smooth real (resp. complex) vector bundles:

Definition 5.1. A real (resp. complex) vector bundle of rank r over a manifold X is a smooth
manifold F together with a smooth projection 7 : E — X such that there exists an open cover
{U;} of X and diffeomorphisms ¢; : 771 (U;) — U; x R” (resp. C") such that:

(i) m = pry o ; on m~1(U;), where pr; denotes the projection to the first factor.
(ii) On U; NUj, the transition functions ¢;; = ¢; o goj_l :(UinU;) x R" = (U; N U;) x R" are of
the form (z,v) — (z, gij(x)v) where g;; € C*(U; N Uj, GL(r,R))
Therefore, one makes the analogue definition for the holomorphic case:
Definition 5.2. A holomorphic vector bundle of rank r on a complex manifold X is a complex

manifold E together with a holomorphic projection 7 : £ — X such that there exists an open cover
{U;} of X and biholomorphic maps ¢; : 7~ 1(U;) — U; x C" such that:

(i) m = pry o p; on 7 H(U;)
(ii) On U; NUj, the transition functions ¢;; = ¢; o goj_l :(UinU;) x C" — (U; N U;) x C" are of
the form (z,v) — (x, g;j(x)v) where g;; : Uy N U; = GL,(C) are holomorphic.
The first obvious example of a holomorphic vector bundle is the holomorphic tangent bundle of a
complex manifold:

Lemma 5.3. For X a complex manifold, the bundle T"°X C TX ® C is holomorphic.

Proof. Let {z1,...,2,} be local coordinates on the complex manifold. Then {8%1’ . %} are a

local basis of 71X . The holomorphicity condition on a change of basis between trivialisations is
precisely the condition that X is a complex manifold. O

As in the case of smooth vector bundles, any natural construction (in a category theory sense) of
vector spaces gives rise to natural constructions of holomorphic vector bundles. In particular, we
have:

Lemma 5.4. Let E,F be holomorphic vector bundles. Then the following vector bundles are
holomorphic:

33



(i) E@F, (i1i) E*, the dual of E,
(i) EQF, (iv) N*E for all k > 0,

Moreover, let p : E — F a bundle morphism. Then the bundles ker ¢ and coker ¢ are holomorphic.
Vector bundles are classified by the appropriate (Cech) cohomology group:
Proposition 5.5. Up to isomorphism, we have the following correspondences:

e real vector bundles of rank r PR SN ¢} (X, GL(r, C>®(X, R))),
e complex vector bundles of rank r PR SNY « (X, GL(T‘, C>®(X, (C)))

e holomorphic vector bundles of rank r PR NN 6} (X, GL (T, (’)X)>,
where GL(r, F) is the sheaf of invertible rank k matrices with coefficients in the sheaf F.

Proof. Exercise. O

Understanding and computing the groups H'! (X , GL(r, A)) is very hard, and there are no general
results, except for the case r = 1, that we will revisit shortly.
To conclude this introduction, we introduce a generalisation of the Dolbeault operator 0 to holo-

morphic bundles Jf.

Proposition 5.6. Let E — X be a holomorphic bundle, and let .Agéq(E) the space of smooth
(p, q)-forms with values in E. There exists a C-linear operator Og : AP4(E) — AP9TL(E) such that

(i) it satisfies the Leibniz rule, i.e. Op(a A s) = da A s+ (=1)PTa A dgs for a € AR and
s € Ag;’ql(E), and

11) 1t squares to zero 52 =0.
() q » YE

Proof. Clearly, the operator O is local. Let {s1,...,s;} be a local trivialisation of E, so any
s € ARY(E) is given by a; € AR?, with s = Zle a; ® s;. We define

k
Opa = 25(04,-) ® s; .

i=1
We need to check that this is well-defined. For another local trivialisation {¢1,...,tx}, there exists
a matrix A = (1) € GL(k, O%) such that s; = >, ¢j; ®t;. Thus,

k k
= O)@si= Y ()@ (VY @1;)
i=1 1,7=1
= 25 (Z alwﬂ> ®t; =0gs,
j=1 =1

where we crucially used that E is holomorphic, so the transition functions are holomorphic, i.e.
Oi; = 0. O

34



Conversely, we have

Theorem 5.7. Let E — X be a complex vector bundle carrying an operator Op satisfying the

conditions above. Then E carries a natural holomorphic structure.

The idea of the proof is that the integrability condition 5% = 0 acts like a ”vanishing” Nijenhuis
tensor, so one can adapt the Newlander-Nirenberg theorem(in fact Frobenius’ theorem is enough)
to produce the holomorphic local trivialising sections. We refer the reader to [Mor07, Thm. 9.2]
for a direct proof using the N-N theorem, and to [DK90, Sec. 2.2] for a more general discussion.

The integrability condition 5]25 = 0 allows us to consider a version of Dolbeault cohomology for

vector bundles: B
_ ker (0p : ARY(E) — ARTTY(E))

im (9g : AR E) —» ABYE))

HYY(E) :
Again, the 0-Poincaré lemma implies that the complex 0 — A&O(E) — Agél (E) — ... is an acyclic
resolution of E ® Q. so

Corollary 5.8. We have HY'(E) = H1(X,E @ QX).

5.1 Holomorphic line bundles

Let us now focus on studying line bundles. First, as we anticipated earlier, we have
Lemma 5.9.

(i) Complex line bundles over X are in one-to-one correspondence with elements of H*(X,Z).

(i3) Real line bundles over X are in one-to-one correspondence with elements of H'(X,Z/27).
Proof. Consider the exponential sequence

0—Z -2 Axe 2% Ak — 0.
We have a long exact sequence of cohomology
oo HY(X, Axc) = HY(X, Ax ) = H*(X,Z) = H*(X, Axc) = ... . (8)

Since Ag is acyclic, the map ¢1 : H' (X, A%) — H?*(X,Z) is a bijection. Similarly, for the real line

bundle case, one considers the short exact sequence
0= Ayxr —> Ax g = Z/2Z — 0. O

Whilst H! (X, GL(r, .7-')) does not carry any additional structure for » > 1, H'(X,GL(1,F) &
H'(X, F*) always carries the additional structure of an abelian group:

Lemma 5.10. The set H'(X,F*) carries the structure of an abelian group, where the tensor
product induces the group operation, and inverses are given by dualisation [L~1 :== L*.

Proof. Immediate. O
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Corollary 5.11. The maps
e HY(X, AL) — H*(X,Z) wy : HY(X, AR) — HY(X,Z/27)
are group morphisms.
Let us now focus on the case of holomorphic line bundles:
Definition 5.12. The group of isomorphism classes of line bundles is called the Picard group:
Pic(X) == H' (X, 0%).
Again, by using the exponential short exact sequence, we have:
Proposition 5.13.

(i) A complex line bundle L admits a holomorphic structure if and only if c1(L) maps to zero in
H?*(X,0x).

(ii) The set of (non-isomorphic) holomorphic structures on a holomorphic line bundle is parametrised
by H'(X,0x)/im (H(X,7Z)).

Proof. Comparing the smooth and holomorphic exponential sequences, we have:

0 — Z — Ox O% 0

0 Z » Ac » AL 0
The claim follows from the induced map of long exact sequences. O
In particular, this discussion shows that, over a complex manifold with H2(X,0Ox) = 0, any

complex line bundle admits a holomorphic structure. As in the case of almost complex manifolds,
this is not true for higher rank complex bundles, as we shall see.
Let us now introduce the tautological line bundle of the complex projective space CP":

Proposition 5.14. The tautological line bundle O(—1) on P" is the line incidence variety:
O(-1)={(l,2) | z€l} CP" x C"*!

with projection w: O(—1) — P".

Proof. On affine charts U; = {z; # 0}, we have trivializations:

T U)2UxC, (1,2) = (I, %)

The transition functions are 1;;(l) = 2. O
J

Using the group structure of Pic(CP"), we define

Definition 5.15. For k € Z, define O(k) = O(—1)2(F) | withO(—1)%" := Opx.
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Notice that since H 2((CIP’Q, Z) = 7. is torsion-free, all line bundles above are genuinely different, i.e.
O(k) = O(1) if and only if k£ = [, both in the holomorphic and complex vector bundle categories.
Moreover, one can ask if O(—1) is a generator of H?(CP?,Z) and if not, what is its multiplicity.

For now, we claim
Theorem 5.16. The line bundle O(1) is a generator of H?(CP",Z).

The proof requires further work, and we will postpone it until a later section. Another class of
examples of line bundles that will interest us is the following;:

Definition 5.17. The canonical bundle of a complex manifold X is the bundle of holomorphic
top-degree forms Ky = AM™X 7+ x10,

There is an interesting class of compact complex manifolds, characterised by their canonical bundle:
Definition 5.18. A compact complex manifold with Kx = Oy is called (weak) Calabi- Yau.

Remark 5.19. Some authors add the further requirement that A” 7* X0 contains no trivial sub-
bundles for 1 < p < dim X. If you are familiar with special holonomy, this is essentially equivalent
to asking the holonomy of X to be irreducible (i.e. not locally a product).

We would like to characterise the canonical bundle of the complex projective space, in virtue of
Theorem (.16 We have

Theorem 5.20 (Euler Sequence). The holomorphic tangent bundle fits in the short exact sequence
of sheaves:
n
0 = Ocpr — @O(l) — 7pn — 0
=0
Proof. On C"*1\{0}, take coordinates 20, .. ., zp, and 7 : C**1\{0} — CP" the standard projection.
Let z; = j—é for ¢ # 0 local coordinates in CP". Then, we have

~ 0 Zi 0 Zodzi — ZidZ() 0
Az (m— ) =d( =) |—— | ="+ ) .
aZj 20 aZj ) 8zz

) 10 o "~z 0

SO

Hence, for L : C**! — C a linear map, if we set v; = L - %, 7 (v;) defines a section of Tcpr. In

particular, 7cpr is spanned {77* (%)} for i € {0,...,n}, with the relation

- 0
gzi%:o.

In particular, this implies the claim, where the maps in the short exact sequence are:

n
0— Ocpr — GB ol — TCopn — 0
i=0
1— (Zo,...,Zn) O



In particular, by taking determinants of the Euler sequence, we have
Corollary 5.21. The canonical bundle of P is Kpn = O(—n —1) .
Proof. We have
n
det(rcpr) ® det(Ocpr) = det <EB 0(1)> =O(n+1),
i=0
and the claim follows from the fact that Kx = det(7x)*. O

Now, given a holomorphic line bundle L — X, it is a natural question to study its space of sections.
Let V = (s0,...,8,) € H%(X, L) be a linear subspace of (globally defined) holomorphic sections of
L. We have the following definitions.

Definition 5.22. The base locus of V' is the vanishing locus of sections spanning V' = (s, ..., Sp).
BL(V):={z € X| so(x) =+ =sp(z) =0} .
The pluricanonical map of V.= (so, ..., sp) is defined as

¢so,...,sn X \ BL(V) — CP™
2= [(Yoso)(x): - (Posa)(z)],

for ¢ a local trivialisation of L and a choice of homogeneous coordinates on CP".
As usual, one routinely checks that the objects above are well-defined.

Proposition 5.23. The pluricanonical map ¢s,,... s, is a well-defined holomorphic map. Moreover,
for two different bases {s;} {s,} of V, there exists a biholomorphism ¥ : CP" — CP" such that

Pfsiy = Vo dpsy

This suggests that if one has a line bundle L with ”"enough” sections, one can hope to find a

pluricanonical map such that
e it has empty base locus,
e is injective, and
e has injective differential.

Finding sufficient conditions for these conditions to be satisfied is roughly the idea behind Kodaria’s
embedding theorem, which we will prove in Section However, we still have a long way to go
before we can quantify what ”enough” means.

For now, we introduce the concept of Kodaira dimension. The group structure on the space of line

bundles induces a map

HO(Xv Ll) ®HO(X1 LQ) - HO(Xv Ll ®L2) .
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Thus, we can consider the graded ring

R(X,L) =@ H(X, LF)
k>0
with the understanding that L° = Oy. By the identity principle, it follows that R(X, L) is an
integral domain whenever X is connected. In particular, we can consider its field of fractions
Q(X, L). Moreover, since R(X, L) is graded, we can further construct the following subfield of the

field of fractions:

Definition 5.24. Let Q°(X, L) the subfield of Q(X, L) that consists of elements of the form f/g
with f,g € H°(X, L¥) for some k.

The interest in Q°(X, L) is motivated by the following proposition:
Proposition 5.25. For any line bundle L — X, there is a map Q°(X, L) — Kx(X).

Proof. Fix k > 1 and set L' = L*. Consider 0 # s1,s0 € H(X,L'). We define a meromorphic
function on X as follows.

Choose a trivialising cover (U;, ;). Then t);05s; define holomorphic functions on U, and so f; = %
is a locally defined meromorphic function. To see that {f;} defines a global meromorphic function,

it suffices to show that it is independent of the choice of trivialisation. Indeed, we have

_Yiosy  (ijodi)osy Ao s
pijosy  (Yio)osy  Apiosy

since 1;; = A € C* since L' is a complex line bundle. O

f] :f’i’

Let us now define

Definition 5.26. Let X be a connected compact complex manifold and L — X a holomorphic
line bundle. We define the Iitaka dimension as

w(X.L) = tr.dege Q(X,L)—1 if Q(X,L)#C
—00 otherwise
If L = Kx the canonical bundle, we write (X, Kx) = x(X) and call it the Kodaira dimension.
We have the following
Proposition 5.27. For any line bundle L — X, we have

K(X,L) <a(X).

Proof. 1If k(X, L) = —oo, there’s nothing to prove. Thus, it suffices to prove tr.dege Q(R) — 1 =
tr.dege Q°(R) for any graded ring such that Q(R) # C.
First, for fo,..., fr € Q(R(X)) are algebraically independent elements of degree d;, ;’%—Z;, e ;?;Z’;

with e; = [, j d; are algebraically independent elements of Q°(R). Conversely, given f1..., fx €
Q°(R) algebraically independent, and fy € Q(R) \ Q°(R), then fo, ... f are algebraically indepen-
dent in Q(R). O
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We conclude this section with the computation of the Iitaka dimensions of the line bundles O(k).
First, we need the following result.

Proposition 5.28. The global sections of O(k) are given by:

C[ZO,...,Zn]k kaZO

HY(P™, O(k)) =
( (&) 0 ifk <0

where Clzo, ..., zp]k denotes the space of homogeneous polynomials of degree k.

Proof. Let us prove it for k > 0. Recall that homogeneous polynomials of degree k are in one to one
correspondence with k-linear symmetric forms F. Thus, a polynomial P € C|z, ..., 2z, defines a
linear map ¢p : (C*"T1)® — C, and thus a holomorphic map sp : CP™ x (C"*1)®F — CP" that is
linear on each fibre. Restricting to O(—k), gives a section of O(k).

Explicitly, for (I;x1,...,2x) € O(=k), write z; = \;jz for a fixed z € I. Then sp(l;z1,...,x) =
(I1; M) P(2). We need to show that this map is bijective. Injectivity is clear, since if sp = 0, the
polynomial P vanishes at every line so P = 0.

To prove surjectivity, let t € HY(CP", O(k)) and let sp another section induced by a polynomial of
degree k. Consider the meromorpliic function F' = % € K(CP"), and the assogiated meromorphic
function on the punctured space F :== F ow € K(C""1\ {0}). Now, G = PF is a homogeneous
holomorphic function on C"*1\ {0} of degree k which extends to C"*! by Hartogs’ phenomenon. By
Liouville’s theorem, G is a (homogeneous) polynomial of degree k, which clearly satisfies G|o(_x) =
t, as needed.

The cases k < 0 follow by the fact that a holomorphic line bundle and its dual both admit global
sections if and only if it is isomorphic to the trivial bundle (cf. Exercise Sheet). O

We readily have

Corollary 5.29.
n if >0
k(CP",O(k)) =<0 if k=0
—oo if k<0

Notice that the proof we gave to Propositioncorresponds precisely to the statement x(CP", O(1)) <
a(CP™)!
6 Divisors and blow-ups

For convenience we shall always assume that the complex manifolds we work with are connected,
unless otherwise specified. Recall from Section we defined analytic sets and the concept of
irreducibility for analytic germs. We define

Definition 6.1. For X a complex manifolds, a divisor on X is a formal locally finite linear com-

D =) alY]]
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where Y; are irreducible analytic hypersurfaces and a; € Z. The collection of divisors with its
natural group structure is called the group of divisors and denoted Div(X).

In other words, Div(X) is the free abelian group over the collection of irreducible analytic hyper-
surfaces. In our case, local finiteness translates to the following condition: for all x € X, there
exists an open neighbourhood U such that U N D is a finite sum.

Definition 6.2. A divisor D = ) a;[Y;] is called effective, and denoted by D > 0, if all a; > 0.

Definition 6.3. Let Y be an irreducible hypersurface, x € Y, U an open neighbourhood in X and
f ek X(U )
The order of f along Y at z, denoted by ordy ,(f) € Z, is defined as the unique integer such that

OrdY,;L' (f) h

z = gz

in Kx ., where g € Ox; is irreducible, and h € O . The order of f along Y,ordy (f) € Z is the
order of f at x such that Y is irreducible at z. [

Again, it follows from the good properties of the ring of germs Ox , and Hilbert’s Nullstellensatz
that the order is well-defined. Moreover, it’s not hard to check that it satisfies

ordy (fg) = ordy (f) + ordy(g) .

In particular, we get a group morphism
®: L% (X) — Div(X) (9)
fe (f) =) ordy(f)[Y]
where the sum is taken over all irreducible hypersurfaces Y C X.
An element in the image of ® is called a principal divisor.

Proposition 6.4. There is an isomorphism H°(X, K% /O%) = Div(X)

Proof. Elements in H°(X, K% /Oxx) are given by a collection {U;, f;}, where {U;} is a cover of X,
and f; € Kx (U;) satisfying fif; ' € Ox(U; N U;). Let f = {U;, fi} € H'(X,K%/O%) and Y an
irreducible hypersurface. We claim that ordy (f) is well-defined.

We may assume that Y NU;NU; # 0, otherwise there’s nothing to prove. Since f € H(X, K% /Oxx),
there exists h;; € O% (U; N Uj), we have

ordy (f;) = ordy (hj) + ordy (f;) = ordy (f;) .

Conversely, let D = " a;[Y;] be a divisor. Choose an open cover {U;} such that Y; N U; = Z(gij)
for some irreducible g;; € Ox(Uj), which is unique up to units in Ox(U;), and define

fi=11le
7

Then f; € Kx(U;) and f;/fi € O%(U; N Uy) since gi;j/gr; € O%(U;j NUy). O

31t is implicit on the definition that the order of f at Y does not depend on the chosen point. This is indeed the
case, but we shall skip the proof. See [Huy05, Prop. 1.1.35] for further details.
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Using the identification above, we have:

Corollary 6.5. There is an exact sequence:
0 — C* = K% (X) 2 Div(X) — Pic(X) .

In particular, to every divisor D, we have an associated line bundle O(D). The line bundle is trivial

if and only if D = (f) for some non-trivial meromorphic function f.
Proof. Take the long exact sequence of cohomology of the short exact sequence of sheaves:

0— 0% - Ky - K%/0%x —0 O
In view of this exact sequence, we define

Definition 6.6. The divisor class group is
Cl(X) = Div(X)/{(f)| f meromorphic}.

We would like to understand the image of the map O : CI(X) < Pic(X). While this map is, in
general, not surjective, we have the following result:

Proposition 6.7. There is the following line bundle - divisor correspondence:

(i) Let 0 # s € HY(X, L) for a non-trivial line bundle. Then O(Z(s)) = L.

(it) For any effective divisor D € Div(X), there exists s € H(X,O(D)) such that Z(s) = D.
Proof.

(i) Let L € Pic(X), and choose (U;, ;) a trivialising cover. The divisor Z(s) associated to
0 # s € HX,L) is given by f = {¢i(s|lv;)} € H°(X,K%/O%). Then, the line bundle
associated to Z(s) corresponds to the cocycle {(U;, f;)}, but

fi ;71 = eilslun;) - (@3 (sloinw;)) ™! = wio @ !

(ii) Let D € Div(X) be an effective divisor, represented by by {(U;, fi € K% (U;))}. Since D is
effective, the functions f; are holomorphic,f; € O(U;). Since the line bundle O(D) defined
via the the cocycle {(U; NUj, 5 = fi - fj_l)} € H'(X,0%), the local holomorphic functions
fi € O(U;) define a global section s € H(X,O(D)), and Z(s)|ly, = Z(fi) = DN U;, so
Z(s) = D, as claimed. O

Finally, recall that, associated to a complex submanifold Y C X, one has the normal subbundle
Ny‘ x, as the cokernel of the injection 7 < 7x. We would like to characterise the normal bundle
of hypersurfaces in view of the preceding discussion. We have

Proposition 6.8. Let Y C X be a (smooth) hypersurface. Then:
Ny;x 20(Y)|y.
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Proof. It suffices to prove that the normal bundle Ny p» has transition functions 52” o;, and that

these are the same as those of O(d)|y. O

This gives a straight application in the case of CP™:

Theorem 6.9 (Adjunction Formula for Hypersurfaces). If Y C P" is a smooth hypersurface of
degree d, then:
Ky 20O(d—n-—1)y.

Proof. By taking determinants on the short exact sequence 0 — Oy — Ocpr — Ny‘@]pn — 0, we
have Ky = Kpn|y ® det(Nypn). But Nypn = O(d)|y, by assumption and Kpn = O(—n — 1) by
Corollary Hence:

Ky = O(=n— 1)y 8 O(d)ly = O(d—n — 1)y . O

6.1 Blow-ups

We conclude this section by introducing a key construction in complex geometry: blow-ups. These
give rise to the active field within complex and algebraic geometry, known as birational geometry.
We will only discuss the fundamental construction and a few direct consequences.

For the entire section, X will be a connected complex manifold and Y C X a closed analytic set.
The blow-up of X along Y is a triple (Bly (X), F, o), with X = Bly (X) a complex manifold, E C X
a divisor called the exceptional divisor, and a proper holomorphic map o : X — X such that

(i) The map o restricted to X \ o~ 1(Y) is a biholomorphism to X \ Y, and
(ii) The map o : 0~ (Y) — Y is biholomorphic to P(Nyx) — Y.
The blow-up map has a characterising universal property, which we will not prove.

Theorem 6.10 (Universal property of a blow-up). Let f : Z — X a bimeromorphic map such that
f restricted to Z \ f~Y(Y) is holomorphic. Then there exists a unique g : Z — X such that the

diagram commutes:

If one believes the universal characterisation of a blow-up, it is clear that the blow-up is unique,
up to a unique biholomorphism. Thus, it suffices to show existence of a blow-up, to which we will
devote the rest of this section.

If one disregards the universal property, the construction of a blow-up outlined below can be taken
to be the definition of the blow-up of X along Y. We begin by considering the example of a point.
Recall that the total space of the line bundle 7 : O(—1) — CP" is the incidence variety inside
C"*! x CP™. Let us consider the other projection o : O(—1) — C"*!. For z # 0 the pre-image
o~1(2) is the unique line [, passing through z € C"*!. However, the preimage at zero is the entire
complex projective space,c~1(0) = CP", as any line in C"*! goes through the origin 0 € C"*!. In
fact, 0=1(0) is simply the zero section of the line bundler : O(—1) — CP™.

We define the blow-up of 0 in C**! as the total space of the line bundle ((’)(—1),77_1(0), a), the
total space of O(—1), where the zero section 771(0) is the exceptional divisor E, together with the
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natural projection o : O(—1) — C"*!. Note that, o is a biholomorphism away from the origin,
whilst the normal bundle of 0 is simply C"*1, so o|,-1() : P(C"*!) = CP" — {0}, as needed.
For an arbitrary linear subspace C™ C C"*!, consider

Bl (C"1) == {(2,1) e C" x CP"™™ | z € (C™, 1)} .

Clearly, Bl,,(C"*1) — CP"™ is a C™*!-fibre bundle, and using the same argument as in the
proof of Proposition it is a holomorphic bundle, so the total space Bl,,(C"*!) is a complex
manifold. The projection o : Bl,,(C"*1) — C"*! gives the required blow up.

Let us construct the blow-up of a complex manifold along a submanifold Y C X™. Of course, the
idea is to use the previous construction as a local model and glue along different coordinate charts.

Proposition 6.11. Let Y be a complex submanifold of X. Then the blow-up of X along Y exists.

Proof. Take {U;, ¢;} an atlas of X such that ¢;(U; NY) = ¢(U;) N C™ C C", and consider
o : Blgm (C") — C" the blow-up of C™ along C™ as constructed above (note that we had n + 1
above, rather than n).
We denote by o; : Z; — ¢;(U;) the restriction of the blow-up to the open subset ¢;(U;) C C", i.e.
Z; = oY (¢;i(U;)), and 0; = o|z,. The goal is to prove that the "local” blow-ups glue along different
charts.
[TO BE ADDED)]

O

Proposition 6.12. The canonical bundle K¢ of the blow-up (X,E, o) is isomorphic to c*Kx ®
Ox((n—1)E).

Proof. [TO BE ADDED] O
Corollary 6.13. For E=CP" ' c X — X, one has O(E)|g = O(-1).

~

Proof. By the previous proposition K¢ = 0" Ky ® (’)((n — 1)E)7 and by the adjunction formula
Kepn-1 =2 (K¢ ® O(E))|g. Hence,Kppn-1 = O(nE). Since Kepn-1 = O(= n) by Corollary
and Pic(CP"!) 2 Z is torsion free, the claim follows. O

7 Hermitian metrics and connections

The idea now is to combine our previous discussion with the choice of metric on our bundles. First,
we go through some basic linear algebra results.

Definition 7.1. A hermitian inner product on a complex vector space E is a bilinear map ( -, - ) :
E ® E — C such that,

e h(a,b) = h(b,a) (Hermitian symmetry)

e h(a,a) > 0 with equality iff @ = 0 (positive definiteness)
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In particular, a Hermitian metric induces an anti-linear isomorphism E = E . The following

lemmas are standard linear algebra:

Lemma 7.2. Let E be a complex vector space. The following objects are in one-to-one correspon-

dence:

(i) Hermitian inner products h,

(7i) (Real) inner products compatible with the complex structure J: g(-,-) = g(J-, J+)
(iii) Non-degenerate positive real (1,1)-forms, w

Lemma 7.3. Let V be an n-dimensional complex vector space, and g a compatible inner product.
Consider w = g(J -, -) the associated (1,1) form, then

n
w

dvolg = — .
n

In particular, if W C 'V is a m-dimensional complex subspace, we have

wm

Volg(Y) = W

In fact, this is a characterising property, due to Wirtinger:

Lemma 7.4 (Wirtinger inequality). Let W2k C (Vzn,g, J) be a subspace of a Fuclidean complex
vector space. Denote byw the associated (1,1)-form. Then

wk

<
B _VOLQ‘W’

with equality if and only if W is a complex subspace.

Proof. Let {eg;—1,e2;} be an orthonormal basis of W and {vg;_1,v2;} its dual basis. Denote by
iota : W — V the inclusion map. Then,

k
vw=> wlezi1,e) v2i-1 Ava; .
i=1
Thus,
O.)k k k
L <k'> = Hw(e%_l, e2;)voly = Hg(J€2i_1, ez;)voly < woly |
) i=1 i=1

where the last inequality is simply the Cauchy-Schwarz inequality. The equality case implies
Jeoi_1 = teq;, as needed. O

On a Euclidean vector space, any form ¢ € /\k V satisfying that ¢l < voly for all k-planes
W C V is called a (pre)calibration.

Let us study the linear algebra associated to a hermitian vector space and its associated exterior
algebra. Let (V2" g,.J ) be a hermitian vector space. Recall that the space of linear maps that
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preserve the hermitian structure of V' is a compact Lie group of dimension n?, called the unitary
group U(V). The space V is naturally an irreducible U(V')-representation, called the standard
representation. The complexified Vo = V ® C splits as two complex irreducible representations:
V103 VOl as discussed above.
We are interested in understanding how /\k V* splits into irreducible U(V')-representations. First,
we need the following concepts:

Definition 7.5. Let (V?",g) be a Euclidean vector space. We define the Hodge star operator
* /\k Ve — /\2"_k V* by the universal property

aAxf = g(a,B)vol, .

It is elementary to check that * is an isometry in A® V* satisfying > = (—1)¥®"=%) = (~1)* on
NV

The Hodge star extends C-linearly to A°® V. With respect to the complex (p, g)-decomposition,
we then have x : AP? — \"72"7P,

Definition 7.6. Let (V2" g,.J) be a Hermitian vector space, with fundamental form w. We define
the Lefschetz operator by:

I /\(p,q) 7 /\(p+1,q+1) 7

a—aAw.

and its adjoint A : A@? vz — AP~LeD V.
Lemma 7.7. We have A = *Lx.

Proof. By definition

g(Aa, B)vol = g(a, LB)vol = L(B) A xax = B A w A xa = (—1)’“9(5, *[L(*a)]) vol .

We will also need the counting operator H | AV = (k —n)Id. With this in hand, we have

Proposition 7.8. Let (V?" g,J) be a Hermitian vector space, with fundamental form w. The
Lefschetz operator satisfies

[H,L] =2L [H,A] = —2A [L,A]=H .
In particular, (L, \, H) induce an sl(2,C)-representation on \* V).

Proof. The statements [H, L] = 2L and [H, A] = —2A are immediate. Let us prove [L,A] = H by

induction over the dimension of V.
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If we decompose V' = W & Wy complex subspaces, we have A*V* = A* W} @ A\* W5 and w =
w1 Bwy,s0L=w ®1+1Qwy = L1 + Lo . By linearity, it suffices to check the claim on split
forms. Let @ = a1 ® as and f = 51 ® (2. Then,

g(o, LB) = g(o, L1 81 @ P2) + g(av, B1 @ Laf32)
= g(a1, L1S1)g(az, B2) + gla1, B1)g(az, L2f2)
= g(Aoq, Br)g(az, B2) + glai, B1)g(Azan, 52) = g(Aa, B) .

So A = A1 + As. Thus, by the induction hypothesis,
(L, Al(e) = Hi(on) @ ag + a1 @ Ha(az) = (k1 —n1)ar @ ag + (k2 — n2)ar @ ag = (K —n)a.
Thus, the base case n = 1 remains. Let {z,y} be a basis of V = C with Jz =y, so
ANvi=AvieNvieN v
R (z,y) (w)
Notice that L and A act trivially on /\1 V* by degree reasons. Finally, one checks that
[L,A]J(A) = =AQw) = =X, [L, Al(pw) = LA(pw) = pw
for A\, p € R. O
Using induction, one gets
Corollary 7.9. Fori > 1, we have [L},A](a) = i(k —n+i— 1)L a).

Definition 7.10. Let (V,g,J) be a Hermitian vector space and consider the associated operators
L A and H. A k-form o € /\k V* is called primitiveif A(a) = 0. The subspace of primitive k-forms
is denoted P*.

Proposition 7.11 (Lefschetz decomposition). Let (V,g,J) be a Hermitian vector space and con-
sider the associated operators L, A and H. We have a direct sum decomposition

/\k Vv — @Li(Pk—Zi) .

i>0

Finally, note that the complex structure .J extends naturally to the space of k-forms: for a € AV,
we define J()(vi,...,v;) = a(Juvi,...,Ju;). The relation between I, L and the Hodge star is
made precise by the following result, due to Weil:

Lemma 7.12. Let (V,g,J) be a Hermitian vector space. Consider the operators:
o x = (—1)(}5)HC * J
e O =exp(L)exp(—A)exp(L).

Then « = ©.
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Proof. We claim that the same dimensional induction argument used in the proof of Proposition
works in this setup. We leave it to the reader to verify the details.

Thus, it suffices to prove this for a complex one-dimensional space. As above, let {z,y} be a basis
of V2 C with Jz =y, so

ANvi=AvieNveNv
R (z,y) (w)
For degree 0, we have x1 = (—1)(2) *I(1) = w, and
O(1) = exp(L) exp(—A) exp(L)(1) = exp(L) exp(=A)(1 +w)
=exp(L)(1+w—Aw) =exp(L)(w) =w.

For degree 1, we have xx = — % I(x) = —xy =z and xy = — % [(y) = xx = y, and by (bi)degree
reasons, © = Id. Finally, for degree 2, we have xw = —w and

O(w) = exp(L) exp(—A) exp(L)(w) = exp(L) exp(—A)(w)
=exp(L)(w—1)=—w. O
As a corollary of the equality x = ©, we get the following useful identity, known as Weil’s formula:

Corollary 7.13 (Weil’s formula). For all o € P*, we have

) k 4! ki
«Li(a) = (_1)(2)mL M),

Proof. Note that since A = — % Lx, we have xexp(L) = exp(A) and *exp(A) = exp(L)*. Thus, for

a € Pk we have

exp(A) exp(—L) * exp(L)a = (~1)(2) I(a)

|
—
\
—_
~—
—

xexp(L)a =

Finally, we have

Definition 7.14. Let (V,g,J) be a Hermitian vector space. For k < n, the Hodge—Riemann

pairing is defined as

k k
N Vex N\ Ve—=c
(a,8) = (-1)" 7 a A B AW

Proposition 7.15. Let a € APV and B € Ap,’q’VC*.
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(i) The Hodge-Riemann pairing vanishes unless (p,q) = (¢',p).
(it) For 0 # o € P9 C APV, we have
Qo @) =[n—(p+ g {(a,a) > 0.
We leave the proof as an exercise to the reader.
Of course, we are interested vector bundles rather than vector spaces:

Definition 7.16. A hermitian metric on a complex vector bundle E is a smooth section of (E® E)*
such that it induced a hermitian structure on each fibre.

By using a partition of unity subordinate to a trivialisation of E, every complex vector bundle

admits a Hermitian metric, as in the Riemannian case. As usual, we have

Lemma 7.17. If (E,h) and (F,h') are Hermitian vector bundles, then E ® F, Hom(E,F), N\’ E
inherit natural Hermitian metrics.

We denote the standard hermitian structure on C by ( -, ).

k k
Example 7.18. . For E = @ Ox, we have h(s,t)(x) = Z(sl(x),tz(x»
i=1 =1
2. For a line bundle L — X with empty base locus and a basis of global sections s1, ..., Sk, we

can define:

_ @0, ¥(&) ¢(£)>

where ¥ is a local trivialization.

We are working with complex vector bundles (which are additionally holomorphic), but not all
properties given by the choice of a hermitian metric extend to the complex category.

For instance, while it is true that given a short exact sequence of holomorphic vector bundles and a
hermitian metric on the middle term, the sequence naturally splits in the complex bundle category,
it does not split in the category of holomorphic bundles.

For instance, if one takes the O(—2)-twisted Euler sequence in CP!:

0—-0(-2)—-0(-1)®0(-1) -0 —0,

then HO(CP',O(-1)%?) =0 # C = H°(O & O(-2)).
Finally, all the computations and results on the Lefschetz operators and related discussion carry
over naturally to the case of complex vector bundles.

7.1 Hodge Theory

The choice of a compatible Riemannian metric on a complex manifold X induces hermitian metrics
on the bundles /\k T*X and AP?T*X, and so the spaces Q¥(M) and QP4(M) are equipped with
the usual inner product and L?-norm .

As in the smooth case, one can ask:
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Question 7.19. Given a class [¢)] € ng(X), is there a representative with minimal L*-norm?
As expected, the answer to this question is given by the L?-adjoint of the corresponding operator:

Lemma 7.20. Let ' be the L?-adjoint to 0. Then v with 0¢ = 0 has minimal L*-norm if and
only if5*¢ =0.

Proof. First, assume we have ¢ € AR? with 9y = 0 = & ¢p. Then, for any other representative
¥ =1 + dgn, we have

1112 = [[]* +118n]]> + 2 Re(w, 8n) = [[]1* + [|9n]|> +2Re(@ v, n) > ||[¢]> .

Conversely, assume 1 has minimal norm. In particular, for all n € Ag;q_l, we have %Hl/H—tén\ 12 =0.
Differentiating, we have Re@*w, n) = 0. By taking ' = in, it follows that @*1/1, n) = 0. Since this
holds for arbitrary 7, we have 0%y =0 . O

The reader might have noticed that, while the statement is technically true, it requires more care
than what has been put into the proof. Indeed, the L?-adjoint is only defined on the L?-completion
of AR, However, from Stokes’ theorem, one has

) a* — A% ) -1
Lemma 7.21. For ¢ € AR, we have 9 ¢ = —%0%) € AT .

Proof. Let o € AP4, B € AP9~1 Then, we have
X X X

_ B o _ el
where we used that 9 (8 A %a) = d (8 A %a) since S A%a € AY" . O
Thus, we have a map kerd Nkerd — HP(X). We define the 0-Laplacian operator
Ag: AT — AP
v (09 +0°9)y
and the space of 9-harmonic forms, ng = ker Az; and similarly for 0.

We have the following key result, due to Hodge:

Theorem 7.22 (Hodge decomposition). Let X be a compact hermitian manifold. Then there exists

a natural orthogonal decomposition
AP — gAp,q—l D HP7‘I(X) @ g*Ap,qul
X — 0Ax 3 X
The spaces of d-harmonic (p,q)- forms HP9 are finite-dimensional.

Corollary 7.23. The map HZ*(X) — HZ? is an isomorphism.

Proof. Tt suffices to prove that ker d = 0 (.Agéq_l) @ ’Hg’q(X ).

= /%

Indeed, by the Hodge decomposition, if 9 9" 8 = 0, we have 0 = (0 9, B) = ||5*B| 2, as needed. [
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Analogously to the Poincaré duality, we have

Proposition 7.24 (Serre duality). For X compact, the pairing
API(X) x AVPA(X) — C
@p)m [ans
X

mduces a non-degenerate pairing

HPU(X) x HPPI(X) — C

7.2 Connections

We want to extend the previous discussion to the more general case of E-valued forms for a vector
bundle E. If E is a holomorphic bundle, we saw that there exists a natural operator 0 that
extends the natural 0 operator. But there is no (a priori) natural extension candidate for 9.

To consider this extension as well as treat the more general case of complex vector bundles, we

need to introduce the concept of a connection:

Definition 7.25. Consider a vector bundle £ — X and & its associated sheaf of sections. A

connection on E is a C-linear map of sheaves:
V:E-ER AL,

satisfying the Leibniz rule:
V(fs)=df @ s+ fVs

for s € E(U), f e C®(U).
Using the natural splitting A% = ;0 @A;O, we get a splitting V = V109 V! for any connection.

Definition 7.26. Let (E, h) be a holomorphic vector bundle equipped with a hermitian metric h.
A connection V is called

(i) compatible if VO = dp,
(ii) metric if VA = 0. That is, for any sections s1, s2 € £, we have

d(h(sl, 82)) = h(Vsl, 82) + h(Sl, VSQ) .

These definitions should be reminiscent of the fundamental theorem of Riemannian geometry, where
the Levi-Civita connection is characterised by being the unique torsion-free metric connection.

Indeed, one has

Proposition 7.27. Let (E,h) be a holomorphic vector bundle equipped with a hermitian metric h.

There exists a unique compatible metric connection on (E,h), called the Chern connection.
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Proof. Let h(s;, sj) = hi; with s; a local frame. If V exists, w must be of type (1,0) and
Ohij + Ohij = d(hi;) = h(Vsi, ;) + h(si, Vs;)
= h(z Wik @ Sk, 55) + h(s;, Zwﬂ ® s1)
= sz‘khkj + Z@lhiz
k l
In coordinate-free notation, we have Oh = wh and O0h = hw’, and there is a unique solution:
w=0hh™L. O
Given a vector bundle F with a connection V:& = £ ® A}(, we can extend it naturally to
VAo A eE
W@ s do®s+ (=1)FwAVs.
Definition 7.28. The curvature of a connection V is the operator:
VZ=VoV:E- AL ®E
Our interest in the curvature operator is motivated by the following proposition:

Proposition 7.29. The curvature operator is function-linear. In particular, one can associate with
it an element Fy € A*(End(E)) such that

Vis=Fy-s.
The - represents the natural action of End(F) and will be omitted in the future.
Proof. Let f € AS(U) and s € E(U) for some open U. Then
V3(fs) =V (df @ s+ fVs) = (d*f @ s —df @ Vs) + (df @ Vs + fV%s) = fV2s) . O

Proposition 7.30. Let (E, h) be a holomorphic hermitian vector bundle and V its Chern connec-
tion. Then Fy € Ay'(End(E)).

We conclude by showing;:

Lemma 7.31. Let (E,h) be a holomorphic vector bundle equipped with a hermitian metric, and V

a connection on E. Then,
(1) If V is a compatible connection, Fy € A?&O @ A;&l :
(ii) If V is metric, for any sections si, s2, we have
h(Fy(s1),s2) + h(s1,Fy(s2)) =0.
(i7i) The Chern connection satisfies Fy € Ak—l.

Proof.
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(i) For any connection, the splitting V = V0 4+ V%! yields
V2 — (V1’0)2 + (Vl,OVO,l + V0,1V1,0) + (V0’1)2 ,

where (VOJ)2 is the only (0,2) component. If V is compatible V%! = dp, and the claim
follows since 52]3 = 0 (cf. Proposition .

(ii) If V is metric, we have
0 = d*h(s1, 52) = d(h(Vs1,s2) + h(s1,Vs2))
= [h(Fvsl, 82) — h(VSl, VSQ)] + [h(VSl, VSQ) + h(Sl, Fvsg)]
= h(FvSl, 82) + h(sl, Fvsg) .
(iii) Combining the two previous statements, the claim follows. O

Finally, let us say a few more words about connections for completeness. A key propery of connec-

tions is the so-called Bianchi identity:

Proposition 7.32 (Bianchi identity). Let V a connection on E. Then the curvature Fy satisfies
VEMEG =0, where VP s the induced connection on the endomorphism bundle.

Since there is little risk of confusion, in the future we will be abusing notation and using V to denote
the connection on E as well as the induced connection on its endomorphism bundle End(E).

Proof. Given the connection V on E, the induced connection V¥ is given by VER(f)(s) =
V(f(s)) = f(V(s)). Using that Fy = V?, we have

(VEFG) (s) = V(Fy(s) - Fe(V(s) = V(V*(s)) = V*(V(s)) = 0. =

7.3 The first Chern class

We conclude this section by revisiting the first Chern class of a line bundle and giving an alternative
interpretation of it.

For a line bundle L, we have End(L) = L ® L* = C, so the curvature Fy can be identified with a
section of Ag(. Moreover, by the Bianchi identity, Proposition we see that dFy = 0, so we
can consider its associated cohomology class [Fy|. We have the following theorem:

Theorem 7.33. Let L — X be a line bundle and V a connection on it. Then
[Fv] = 2m c1 (L)R

where c1(L) € H*(X,Z) is the first Chern class of L defined by the connecting map in the exponential
long exact sequence, Equation , and c1(L)r = ¢1(L) @ R. In particular, [Fy] is independent of
the chosen connection.
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Proof. We want to construct a Cech cocycle describing ¢ (L). Let {(U;, #;)} a trivialising cover of
L with U;; = U; N U; simply connected. Then [L] = [{¢i;}] € H'(X, AL").
Thus, if we set ¢;; = log(¢;;), we have

1
Cijk = %(%‘j + ik — Vik)

defines a cocycle representing ¢ (L).
Recall the de Rham resolution C — Ag( — A}( — -+ is acyclic. Consider the induced short exact

sequences:

0—=2Z— A% - K' =0,

0— K'— A — K? 0.

The boundary map gives:

HO(XvKQ) &’

If V is a connection on L with local connection forms w; on U;, we have:

wi = gij - wj - gy + dgij - 935",

wj —wi = —g;;'dgij = —dlog gij.

Thus, putting it all together, we have

1
SHwi} = {wj — w;} = {~dlog gi;} = —2mi §° {2m loggij} = —2mici(L) .
O

A first consequence of this theorem is that the image of ¢} : Pic(X) — HZ?(X,R) lies in the
Hb!'-component.

This gives a necessary condition for a line bundle to be holomorphic. Let us prove that it is
sufficient.

Proposition 7.34. Let f € H'Y(X) C H?(X,R) denote a complex line bundle L. Then L admits

a holomorphic structure.

Proof. Let V be a connection on L. By Theorem we know that [i.Fv] = B € HY(X,R).

21

Thus, there exists a closed real (1,1)-form ¢ such that [(] = a = [%Fv].
Since [C — %Fv] = 0, there exists a such that da = ( — ﬁFv.Consider the modified connection
V = V + 2mice. Then Fg = Fy +2mida = € Aﬁél.

Thus V is a compatible connection, and so L admits a holomorphic structure by Theorem O

Let us combine Theorem with the line bundle-divisor correspondence. For that, we need to
recall the following Poincaré map.
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Let ¢ : Y — X be a smooth hypersurface. The Poincaré map ny € Hglg_Q(X, R)* = H2,(X,R) is
given by

ny  Hip ?(X,R) - R
v (), [Y])
This extends to a well-defined map
n:Div(X) — Hip(X,R)

> ailYi] =Y amy,

]

since X is compact. We have

Theorem 7.35. Let L = O(D) for some divisor D € Div(X). Then c1(L) € H3p(X) is the image
of D under the Poincaré map.

Proof. Since ¢; is a linear map, we may assume D = [Y] is an irreducible hypersurface. Choose h

a metric on L = O(Y) and let V be its Chern connection, with curvature Fy. The claim of the
theorem is equivalent to
for all v € Q22 (X).

/ Fyny= —27ri/ (),
X Y
closed

[ADD LATER] 0

8 Kahler Manifolds

We now move on to discuss an important class of complex manifolds: Kahler manifolds.

The idea behind Kéhler manifolds is to have a compatible metric with the (almost) complex struc-
ture, not just as a hermitian structure, but also satisfies some differential constraints, similar to
the vanishing of the Nijenhuis tensor we saw in Section [2.2] In fact, we have

Definition 8.1. Let (X, g,J) be an almost hermitian manifold, and let V denote the Levi-Civita
connection of g. We say g is a Kdhler metric if VJ = 0. A manifold equipped with a Kahler metric
is called a Kdhler manifold

The following proposition gives a more hands-on approach to Kéahler metrics.
Proposition 8.2. An almost hermitian manifold (X, g,J) is Kdhler if and only if
(i) its Nijenhuis tensor vanishes Ny =0, and
(ii) the associated (1,1) form w is closed, dw = 0.

Sketch. First notice that VJ = 0 is equivalent toVw = 0. Now, one can split Vw into its symmetric
and antisymmetric parts, Vw = (Vw)® + (Vw)**.
Since the Levi-Civita connection is torsion-free, (Vw)*® = dw. With some work, one can identify

(Vw)® with the Nijenhuis tensor. O
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We refer the interested reader to the seminal paper of Gray and Hervella |GH80| for a detailed proof,
as well as an extended discussion around the topic of Kahler metrics and their generalisations.

By the proposition above, the defining (1, 1)-forms w is a symplectic form. Thus, one can view a
Kahler manifold as a complex manifold carrying a compatible symplectic structure.

Proposition 8.3. Let (X, g,J) be a hermitian manifold. Then g is a Kdihler metric if and only if

the Levi-Civita and the Chern connections coincide.

Proof. The necessity is clear. Sufficiency is proved in detail in [Huy05, Prop. 4. A.7]. O

9 Positivity and vanishing

10 The Kodaira embedding theorem

11 Kodaira-Spencer deformation theory
12 The Tian-Todorov theorem

References

[CW21] J. Cirici and S. O. Wilson. “Dolbeault cohomology for almost complex manifolds”. In:
Advances in Mathematics 391 (2021). DOI: https://doi.org/10.1016/j.aim.2021.
107970L

[Dem12] J.-P. Demailly. Complex Analytic and Differential Geometry. 2012.

[DK90]  S. K. Donaldson and P. B. Kronheimer. The geometry of four-manifolds. Oxford math-
ematical monographs. 1990.

[GH80] A. Gray and L. Hervella. “The sixteen classes of almost Hermitian manifolds and their
linear invariants”. In: Annali di Matematica Pura ed Applicata 123 (1980), pp. 35-58.
DOI: 10.1007/BF01796539.

[Har77]  R. Hartshorne. Algebraic Geometry. Graduate texts in Mathematics - Springer, 1977.

[Huy05] D. Huybrechts. Complex Geometry: An Introduction. Universitext, Springer-Verlag, 2005.
[MS74]  J. Milnor and J.D. Stasheff. Characteristic Classes. Princeton University Press, 1974.
[

Mor07] A. Moroianu. Lectures on Kdhler Geometry. London Mathematical Society Student
Texts. Cambridge University Press, 2007.

[Wel08]  R. O. Wells. Differential Analysis on Complex Manifolds. Graduate texts in Mathematics
- Springer, 2008.

96


https://doi.org/https://doi.org/10.1016/j.aim.2021.107970
https://doi.org/https://doi.org/10.1016/j.aim.2021.107970
https://doi.org/10.1007/BF01796539

	Holomorphic functions: Local theory
	Cauchy Integral Formula and power series expansion
	Hartogs' phenomenon and the Weierstrass theorems
	The ring of holomorphic germs OCn,0 and Hilbert's Nullstellensatz

	Complex and almost complex manifolds
	Almost complex structures
	The exterior differential and the Nijenhuis tensor
	Cohomologies in complex manifolds

	Sheaves and their cohomologies
	Sheaf cohomology
	Čech cohomology

	Meromorphic functions and Siegel's theorem
	Holomorphic bundles and Kodaira dimension
	Holomorphic line bundles

	Divisors and blow-ups
	Blow-ups

	Hermitian metrics and connections
	Hodge Theory
	Connections
	The first Chern class

	Kähler Manifolds
	Positivity and vanishing
	The Kodaira embedding theorem
	Kodaira-Spencer deformation theory
	The Tian-Todorov theorem

