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This course aims to give an introduction to the world of complex geometry. The main idea I would

like to convey to the reader is the strong local-to-global properties that holomorphic functions

possess, and thus manifolds whose transition functions are holomorphic: complex manifolds.

I have based these notes on the two excellent books, the first by Daniel Huybrechts [Huy05] and

the other by Jean-Pierre Demailly, [Dem12], who unfortunately passed away before the book was

ever published, and only online drafts are available.
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1 Holomorphic functions: Local theory

We begin by reviewing fundamental properties of holomorphic functions and their generalisation to

several complex variables. We identify Cn ∼= R2n as real vector spaces via the map (z1, . . . , zn) 7→
(x1, y1, . . . , xn, yn) where zj = xj + iyj .

Definition 1.1. A function f : R2n → R2m is differentiable at z0 if there exists a linear map Dfz0
such that

f(z) = f(z0) +Dfz0(z − z0) + o(∥z − z0∥).

Definition 1.2. A function f : Cn → Cm is holomorphic at z0 if it is real-differentiable and its

differential Dfz0 is complex-linear, i.e., Dfz0 ∈ HomC(Cn,Cm) ∼= GL(n,C) ⊆ GL(2n,R).

The complex-linearity condition can be expressed using the standard complex structure J on R2n

(multiplication by i):

J ◦Dfz0 = Dfz0 ◦ J. (1)

This is the coordinate-free form of the Cauchy-Riemann equations.

In coordinates zj = xj + iyj and f = (u1 + iv1, . . . , um + ivm), equation (1) becomes:∂xjuk = ∂yjvk

∂yjuk = −∂xjvk
for j = 1, . . . , n; k = 1, . . . ,m.

A powerful reformulation uses the Wirtinger operators:

∂

∂zj
:=

1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂zj
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
.

Lemma 1.3. The Wirtinger operators satisfy:

(i)
∂f

∂zj
=

(
∂f

∂zj

)

(ii)
∂zk
∂zj

= δjk,
∂zk
∂zj

= 0

(iii) For f = (f1, . . . , fm) and g = (g1, . . . , gn):

∂(f ◦ g)
∂zj

=

m∑
k=1

(
∂f

∂wk

∂gk
∂zj

+
∂f

∂wk

∂gk
∂zj

)
∂(f ◦ g)
∂zj

=
m∑
k=1

(
∂f

∂wk

∂gk
∂zj

+
∂f

∂wk

(
∂gk
∂zj

))

Moreover, f is holomorphic if and only if
∂f

∂zj
= 0 for all j.
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We can consider the complexified derivative

Df(z0)
C : Tz0R2n ⊗ C −→ Tf(z0)R

2 ⊗ C.

The space Tz0R2n ⊗ C (resp. Tf(z0)Rn ⊗ C) admits the canonical coordinate base {∂/∂zi, ∂/∂zi}
(resp. {∂/∂w, ∂/∂w}). In this base, the Jacobian in block form takes the form

The a holomorphic map f , the matrix of derivatives has the form

Df =

(
∂f
∂zi

0

0 ∂f
∂zi

)
,

reflecting complex-linearity (no ∂/∂z̄-components) of f . It follows that for any holomorphic function

f , det
(
Df(z0)

C) is real and non-negative; det (Df(z0)) ≥ 0.

Definition 1.4. A holomorphic map f : U → V is called biholomorphic if there exists a holomor-

phic inverse g to f .

If f is holomorphic and regular (non-degenerate Jacobian), then its Jacobian determinant satisfies

detDf =

∣∣∣∣det( ∂f∂zi
)∣∣∣∣2 > 0.

In particular, det(Df) ̸= 0 is the local invertibility criterion. Indeed, we have the holomorphic

version of the inverse function theorem:

Theorem 1.5 ( Holomorphic Inverse Function Theorem). Let U, V ⊆ Cn open and f : U → V a

holomorphic map. Consider z0 ∈ U such that det(Df(z0) ̸= 0. Then there exist open subsets

z0 ∈ U ′cU and f(z0) ∈ V ′CV such that f restricts to a biholomorphism.

More generally, a holomorphic map f : U → V is called a regular (submersion/immersion as

appropriate) when the complex-linear partials {∂f/∂zi}ni=1 are surjective (or injective) as needed.

Theorem 1.6 (Holomorphic Implicit Function Theorem). Let U ⊆ Cn and V ⊆ Cm be open sets

with n > m and f : U → V a holomorphic function. Assume that there is z0 such that Df(z0)

satisfies

det

[(
∂fi
∂zj

)
i,j=1,...n

]
̸= 0 . (2)

Then there exists open sets U1 ⊆ Cn−m, U2 ⊆ Cm such that U1 × U2 ⊆ U and a holomorphic

function g : U1 → U2 satisfying f(w, g(w)) = f(z0) for all w ∈ U1.

Proof. The inverse function theorem guarantees the existence and differentiability of g. We need

to show that g is holomorphic. Indeed, by the chain rule of Lemma 1.3, we have

0 =
∂

∂wj

[
fi(w, g(w))

]
=

∂fi
∂wj

+

n∑
k=1

∂fi
∂zk

∂gk
∂wj

+
∂fi
∂zk

(
∂gk
∂wj

)
=

n∑
k=1

∂fi
∂zk

∂gk
∂wj

,

where the first and third terms in the middle line vanish since f is holomorphic.

But the condition in Equation (2) implies that
(
∂fi
∂zj

)
is invertible, so the only way the second line

can vanish is if ∂g
∂zj

= 0, as needed.
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A straightforward corollary of the Holomorphic Implicit Function Theorem is the existence of left

(resp. right) holomorphic inverses. We have

Corollary 1.7. Let U ⊆ Cn and V ⊆ Cm be open sets and f : U → V a holomorphic function.

Assume we have z0 ∈ U such that Df(z0) has maximal rank. Then,

(i) If n > m, there exists open sets z0 ∈ U ′ ⊂ U and V ′ ⊆ V , and a biholomorphic map

g : V ′ → U ′ such that f ◦ g = Id in V ′.

(ii) If n < m, there exists open sets U ′ ⊂ U and f(z0) ∈ V ′ ⊆ V , and a biholomorphic map

g : V ′ → U ′ such that g ◦ f = (Idn, 0) in U
′.

1.1 Cauchy Integral Formula and power series expansion

Recall that a key result of complex analysis is the integral formula of Cauchy:

Theorem 1.8 (Cauchy Integral Formula). Let K ⊆ C be a compact subset with piecewise C1

boundary C = ∂K, and f : K → C a differentiable function. Then for z ∈ K \ ∂K, we have

2πif(z) =

∫
∂K

f(w,w)

w − z
dw +

∫
K

∂f

∂w

dw ∧ dw
w − z

(3)

Proof. Without loss of generality, we assume z = 0. We want to study the function f(w,w)/w ∈
L1(K). Taking δ > 0, we have on one side,∫

K\Bδ(0)
d

(
f(w,w)

w

)
dz = −

∫
K\Bδ(0)

∂f

∂w

dw ∧ dw
w

.

On the other side, by Stokes’ theorem, we get∫
K\Bδ(0)

d

(
f(w,w)

w

)
dw =

∫
∂K

f(w,w)

w
dw −

∫
∂Bδ

f(w,w)

w
dw .

Parametrising the last term in polar coordinates w = δeiθ, we have∫
∂Bδ

f(w,w)

w
=

∫ 2π

0
f(δ, θ)idθ .

Putting everything together and taking δ to zero, the claim follows by continuity of f .

Of course, we are mostly interested in the case where f is holomorphic, so the last term in (3)

vanishes, and we have the usual expression

f(z) =
1

2πi

∫
∂K

f(w)

w − z
dw (4)

The Cauchy Integral Formula (CIF) generalises to higher dimensions by considering polydiscs

DR(w) = BR1(w1)× . . . BRn(wn) and iterative use of Fubini’s theorem.

Exercise 1.9. Prove the n-dimensional Cauchy Integral Formula in detail:

f(z) =
1

(2πi)n

∫
∂DR(z)

f(w1, . . . , wn)

(w1 − z1) . . . (wn − zn)
dw1 . . . dwn .

6



The CIF has some important, remarkable consequences for the regularity of the function f :

Proposition 1.10. Let f : U → C be a holomorphic function. Then f is analytic. That is, it

admits a convergent power series expansion

2πif(z) =
∑
|α|≥0

f (α)(z0)

α!
zα ,

with α a multi-index α = (α1, . . . , αn), .

Proof. We argue the case n = 1; the higher-dimensional case follows. We know
1

z − w
=

1

z

1

(1− w/z)
=∑

k≥0

wk

zk+1
for |w| < |z|. Substituting in the CIF and using Lebesgue monotone convergence, we have

2πif(w) =

∫
C

f(z)

z − w
dz =

∫
C

∑
k≥0

wk
f(z)

zk+1
dz =

∑
k≥0

wk
∫
C

f(z)

zk+1
dz .

Analyticity follows. The coefficients of the power expansion are the successive derivatives of f by

the uniqueness of Taylor expansions. Alternatively, one can check directly:

f ′(w) = lim
h→0

f(w + h)− f(w)
h

= lim
h→0

1

2πih

∫
C

f(z)

z − (w + h)
− f(z)

z − w
dz

= lim
h→0

1

2πih

∫
C

hf(z)

(z − w − h)(z − w)
dz =

1

2πi

∫
C

f(z)

(z − w)2
dz .

The analyticity of holomorphic functions has some remarkable consequences:

Theorem 1.11 (Open mapping theorem). Let f : U → C be a non-constant holomorphic function

on an open set U . The f is an open mapping.

In particular, if there exists z0 ∈ U such that |f(z)| ≤ |f(z0)| for all z ∈ U , f is constant.

Theorem 1.12 (Identity principle). Let U be an open connected subset of Cn and f, g : U → C
holomorphic functions. If f = g on an open subset V ⊂ U , then f ≡ g on all of U .

Proof. Let

W =

{
z ∈ U

∣∣∣ ∂αf
∂zα

=
∂αg

∂zα
∀ α multi-index

}
.

The set W is clearly closed and non-empty. By analyticity, W is also open, and by connectedness,

W = U .

Another consequence of the Cauchy Integral Formula, Equation (4), is

Lemma 1.13 (Cauchy inequality). Let f : U → C be a holomorphic function and take R > 0 such

that the ball BR(z0) is contained in U . Then

|f (α)(z0)| ≤
α!

Rα
sup

∂BR(z0)
|f(z)| (5)
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There are two important corollaries of this inequality:

Theorem 1.14 (Generalised Liouville theorem). Let f : Cn → C a holomorphic function such that

|f(z)| ≤ C(1 + |z|)D for some C,D ≥ 0. Then f is a polynomial with degree at most D.

Theorem 1.15 (Montel’s theorem). Let U ⊆ Cn open, and consider O(U) the space of holomorphic

functions on U , equipped with the uniform convergence on compact sets topology, induced by C0(U).

Then every locally uniformly bounded sequence (fj)j ⊆ O(U) has a convergent subsequence.

Proof. By Arzelà–Ascoli.

1.2 Hartogs’ phenomenon and the Weierstrass theorems

So far, all properties that we have discussed are direct analogues of properties that occur in complex

analysis (n = 1) and have discussed the rigidity of holomorphic functions. First, we need the

following technical lemma

Lemma 1.16. Consider the open cylinder U × V with U ⊆ Cn open, and V ⊆ C a neighbourhood

of ∂Bε(z0) and let f : V × U → C a holomorphic function. Then

g(z1, . . . , zn) :=

∫
∂Bε(z0)

f(ξ, z1, . . . zn)dξ

is a holomorphic function on U .

Proof. Notice that if f were holomorphic on U ×Bε(z0), we would essentially be done. The idea is

to reduce it to an equivalent situation.

Since ∂Bε(z0) is compact, for every δ > 0, there exists finitely many ξi such that {Bδ(ξi)} cover

∂Bε(z0). By choosing δ small enough, we can ensure Bδ(ξi) ⊆ V and f has a convergent power

series in Bδ(ξi)× Ui for all i.
We can now split the integral into a finite sum of integrals where f has a power series expansion.

Let us now focus on the extension problem.

Theorem 1.17 (Hartogs’ principle). Let DR(0) and DR′(0) be two polydiscs in Cn with DR′(0) ⊆
DR(0) so Ri > R′

i for all i. Any holomorphic function f : DR(0) \ DR′(0) → C can be uniquely

extended to a holomorphic function f : DR(0)→ C.

Proof. Let w = (z2, . . . , zn) with |z2| > R′
2. We can use the Cauchy formula for the function

z 7→ f(z, w), for R′
1 < δ < R1:

f(z, w) =
1

2πi

∫
|ξ|=δ

f(ξ, w)

(ξ − z)
dξ

The integrand is (ξ, z, w) 7→ f(ξ,w)
(ξ−z) dξ, which is holomorphic on Bc(δ)×Bδ−c(0)×DR2,..., Rn(0) for

some small c. Therefore, by the lemma, the function

f̃(z, w) =
1

2πi

∫
|ξ|=δ

f(ξ, w)

(ξ − z)
dξ

is holomorphic on Bδ−c(0)×DR2,...,Rn , providing the desired extension by the identity principle.
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We conclude this subsection by proving two technical lemmas, due to Weierstrass, that will be

useful throughout the course. First, we need

Definition 1.18 (Weierstrass Polynomial). A Weierstrass polynomial in z1 of degree d is a poly-

nomial

zd1 + a1(w)z
d−1
1 + · · ·+ ad(w),

where ai(z
′) are holomorphic functions in w = (z2, . . . , zn) defined in a neighbourhood of the origin

and such that ai(0, . . . , 0) = 0.

Theorem 1.19 (Weierstrass Preparation Theorem). Let f : Dε(0) → C with f(0, 0) = 0 and

f(z1, 0, . . . , 0) ̸≡ 0. Then for some smaller ball Dε′(0) there exists a unique decomposition:

f = g · h

where g is a Weierstrass polynomial in z1, and h : Dε′(0) → C is a holomorphic function without

zeros.

Proof. By taking ε1 smaller if needed, we may assume f(z1, 0, . . . , 0) vanishes only at 0, with

multiplicity d. Moreover, choose r ∈ (0, ε) and ε2, . . . , εn so that f(z1, w) ̸= 0 for |z1 − r| < ε and

|wi| < εi, which exist by continuity and compactness.

For small w, the zeros of fw(z) = f(z, w) are given by a1(w), . . . , ad(w). Define:

g(z, w) =
d∏
i=1

(z1 − ai(w)), h =
f

g

We need to show that g and h are holomorphic in z1 and w. Holomorphicity in z1 is straightforward.

To see g is holomorphic in w, notice that this amounts to showing that the elementary symmetric

polynomials in terms of ai(w) are holomorphic, which are linear combinations of Sk =
∑n

i=1 ai(w)
k

for k = 0, . . . , d. By the Cauchy residue formula 1, we have
n∑
i=1

ai(w)
k =

1

2πi

∫
|ξ|=ε1

ξk
∂

∂ξ

[
log
(
f(ξ, w)

)]
dξ ,

which is holomorphic by Lemma 1.16. Finally, we may write

h(z1, w) =
1

2πi

∫
|ξ|=ε′1

h(ξ, w)

ξ − z1
dξ,

which is everywhere holomorphic by Lemma 1.16 and f/g being holomorphic on the annulus.

Theorem 1.20 (Weierstrass Division Theorem). Let f ∈ OCn,0, and let g be a Weierstrass poly-

nomial of degree d. Then there exist a unique h ∈ OCn,0 and r ∈ OCn−1,0[z1] with deg r < d such

that:

f = g · h+ r

Proof. Define

h(z, w) =
1

2πi

∫
∂Bε(0)

f(ξ, w)

g(ξ, w)

dξ

ξ − z
and check that r = f − gh lies in OCn−1,0[z1] and is of degree < d holomorphicity.

1Check this formula by yourself, note that k = 0 is precisely the argument principle, giving the count of zeros

enclosed in the domain.
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1.3 The ring of holomorphic germs OCn,0 and Hilbert’s Nullstellensatz

We study the local behaviour of holomorphic functions on an arbitrarily small neighbourhood of a

point. More formally, this leads to considering the notion of germs and stalks:

Definition 1.21. The holomorphic stalk at the origin, denoted OCn,0, is the set of all equivalence

classes of pairs (U, f), where U is an open neighbourhood of 0 in Cn and f : U → C is a holomorphic

function.

Two pairs (U, f) and (V, g) are considered equivalent if there exists an open neighbourhood W ⊆
U ∩ V of 0 such that f and g agree on W :

(U, f) ∼ (V, g) ⇐⇒ f |W = g|W for some open W ∋ 0.

An equivalence class is called a holomorphic germ at 0.

Alternatively, one can think of the holomorphic stalk as the set of convergent power series inside

C[[z1, ..., zn]].

Exercise 1.22. Prove that this is indeed the case, i.e. there is a one-to-one correspondence between

convergent power series and holomorphic germs.

Remark 1.23. Definition 1.21 might feel overly complicated and slightly unnatural. Indeed, stalks

and germs are better understood in the language of sheaves, which we will introduce in Section 3.

The holomorphic stalk OCn,0 inherits a ring structure from that of holomorphic functions. We

devote ourselves to studying its structure. We shall prove

Theorem 1.24. The stalk of holomorphic germs OCn,0 is

(i) a local ring,

(ii) a unique factorisation domain (UFD), and

(iii) Noetherian.

Proof. (i) The ideal I0 given by (germs of) functions vanishing at the origin is maximal, with

residue field OCn,0/I0 ∼= C. If f ∈ OCn,0 satisfies f ̸= 0, then one can show with little work

that f ∈ O∗
Cn,0, so there’s no other maximal ideal I0.

(ii) We prove this by induction. The case n = 0 is trivial.

Let f ∈ OCn,0 vanishing at the origin. By the Weierstrass Preparation Theorem 1.19, we can

uniquely write f as f = u · p, with u ∈ O×
Cn,0 a unit and p ∈ OCn−1,0[w] (the germ of) a

Weierstrass polynomial.

The OCn−1,0 is a UFD by induction hypothesis, and so is OCn−1,0[w] by Gauss’ lemma.

It remains to check that p is a finite irreducible element of OCn,0, which is straightforward

using the uniqueness of the decomposition of the Weierstrass Preparation Theorem 1.19.
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(iii) Again, we prove this by induction, with the case n = 0 being immediate.

Assume OCn−1,0 is Noetherian, and therefore so is the subring OCn−1,0[z1] ⊆ OCn,0, by

Hilbert’s basis theorem.

Let I ∈ OCn,0 an ideal, so I ∩ OCn−1,0[z1] is finitely generated.

Take f ∈ I.By the Weierstrass Preparation Theorem 1.19, we get f = gh with h ∈ O∗
Cn,0 and

g ∈ OCn−1,0[z1], so g = fh−1 ∈ I ∩ OCn−1,0[z1].

For any other f̃ ∈ I, the Weierstrass division theorem implies that f̃ = gh̃ + r̃ for r ∈
OCn−1,0[z1]. Since f̃ and g are in I, it follows that r ∈ I ∩ OCn−1,0[z1]. Thus, I is a finitely

generated ideal.

We include one final lemma for the sheaf of holomorphic stalks that will be useful in the future:

Lemma 1.25. Let f ∈ OCn,0 irreducible. Then for ε > 0 small enough f ∈ OCn,z is irreducible

for all z ∈ Bε(0). Similarly, if f, g ∈ OCn,0 are coprime, they remain coprime in OCn,z for all

z ∈ Bε(0) for ε small enough.

Proof. We include the details for the proof of when f and g are coprime; the proof of irreducibility

follows the same logic.

By the Weierstrass Preparation Theorem 1.19, we may assume f and g are Weierstrass polynomials.

Thus, they must be coprime as polynomials. By Gauss’ lemma, this means we can find polynomials

p1, p2 ∈ OCn−1,0[z1] and 0 ̸= h ∈ OCn−1,0 such that h = fp1 + gp2. The claim follows.

Let us now define analytic sets and their germs. Given f : U → C a holomorphic function, we

denote its vanishing set as Z(f) = {z ∈ U
∣∣ f(z) = 0}.

Definition 1.26. An analytic set Z ⊆ X is a set such that for each x ∈ Z, there exists an open

neighbourhood U ∋ x and holomorphic functions f1, . . . , fk ∈ O(U) with

Z ∩ U = Z(f1, . . . , fk) =

k⋂
i=1

Z(fi) .

In the same spirit as before, we define the corresponding germs

Definition 1.27. An analytic germ at x ∈ X is an equivalence class of analytic sets under the

relation Z1 ∼ Z2 if Z1 ∩ U = Z2 ∩ U for some neighbourhood U ∋ x.

Given a germ X at the origin, we denote by I(X) the set of homomorphic germs s satisfying the

condition X ⊆ Z(s). So Z(·) takes holomorphic germs (or functions) to analytic germs, and I(·)
takes analytic germs to their holomorphic counterparts. They satisfy the following relations:

Lemma 1.28.

(i) For any subset A ⊆ OX,x, Z(A) is a well-defined analytic germ with Z(A) = Z((A)OX,x
).

(ii) For every analytic germ Z, I(Z) = {f ∈ OX,x | Z ⊂ Z(f)} is an ideal.

11



(iii) If X1 ⊂ X2 are analytic germ, then I(X2) ⊂ I(X1). If I1 ⊂ I2 are ideals in OX,x, then

Z(I2) ⊂ Z(I1).

(iv) Z = Z(I(Z)) and I ⊂ I(Z(I)).

(v) Z(I · J) = Z(I) ∪ Z(J) and Z(I + J) = Z(I) ∩ Z(J).

Proof. Exercise.

The relation between holomorphic and analytic germs is made precise by Hilbert’s Nullstellensatz:

Theorem 1.29 (Hilbert’s Nullstellensatz Theorem). For any ideal I ⊆ OX,x, we have:

√
I = I

(
Z(I)

)
where

√
I is the radical ideal of I;

√
I = {f ∈ OX,x | fn ∈ I for some n}.

We would like to understand the fundamental “building blocks” of holomorphic and analytic germs.

Since the holomorphic stalk naturally carries a ring structure, our focus will be on its prime ideals.

On the side of analytic germs, we introduce the following definition:

Definition 1.30. An analytic germ is Z called irreducible if for any union Z = Z1 ∪ Z2 with Zi

analytic germs, either Z = Z1 or Z = Z2.

As expected, we have the following result

Lemma 1.31. An analytic germ Z is irreducible if and only if I(Z) is a prime ideal.

Proof. Let f1f2 ∈ I. Then Z =
(
Z ∩Z(f1)

)
∪
(
Z ∩Z(f2)

)
. If Z is irreducible Z = Z ∩Z(fi), so fi

vanishes along Z, i.e. fi ∈ I(Z).
The converse follows similarly.

2 Complex and almost complex manifolds

We now introduce the main class of objects that we are interested in, complex manifolds. We will

give two definitions for them. First, using complex charts and holomorphic transition functions.

Second, we adopt a more differential geometric style, using GL(n,C)-structures, more commonly

known as almost complex structures on a real manifold. The two definitions are equivalent by

virtue of the celebrated Newlander-Nirenberg Theorem.

For the remainder of the notes, a (topological) manifold is a locally Euclidean, second-countable 2,

Hausdorff space. Recall from differential geometry:

Definition 2.1. A Ck-manifold is a topological manifold equipped with an atlas of charts (Ui, ϕi)i∈I ,

where transition functions ϕij = ϕi ◦ ϕ−1
j are Ck-diffeomorphisms between open sets in Rn.

2Sometimes
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Recall that C0-manifolds are topological manifolds, and that a theorem of Whitney tells us that a

Ck-manifold for k ≥ 1 admits a compatible C∞-structure.

There is an intermediate notion between C0 and C1, called PL:
Understanding when a manifold admits a smooth structure, and if so, how many, was an active

research area in the second half of the 20th century that is nowadays well understood (see e.g. Ker-

vaire–Milnor groups, Kirby–Siebenmann invariants, geometrisation conjecture) except in dimension

4, where surprising links to other areas of mathematics appear.

Another class (before I digress too much) is the class of affine manifolds, where the Ck condition is

replaced by Aff(Rn), requiring the transition maps to be affine maps of Rn. Affine manifolds are

quite mysterious, and longstanding conjectures and open problems remain to be tackled.

Definition 2.2. A complex manifold is a manifold equipped with an atlas of charts (Ui, ϕi)i∈I ,

where transition functions ϕij = ϕi ◦ ϕ−1
j are biholomorphisms between open sets in Cn.

To avoid issues and pathologies, we will always assume our atlases are maximal, i.e. they are not

a proper subset of any other atlas. Every atlas {(Ui, ϕi) : i ∈ I} is contained in a unique maximal

atlas: the set of all charts (U, ϕ) compatible with (Ui, ϕi) for all i ∈ I, so there is no prejudice in

always taking the maximal atlas.

We will mostly refer to X as the complex manifold, omitting the atlas to lighten notation, as is

typically done in differential geometry. As in the previous case, we can ask the questions:

Question 2.3. When does a manifoldM admit the structure of a complex manifold? Is the complex

structure unique? Can we classify complex manifolds up to biholomorphism?

In contrast to the smooth case, very little is known in this case, beyond some obvious topological

constraints, discussed in the exercises.

In the compact setting, some existence and classification results exist for complex dimensions 1

and 2. Already in dimension 3, we find one of the most (in)famous open problems in differential

geometry:

Question 2.4. Does the round 6-sphere S6 admit the structure of a complex structure?

In the non-compact case, we have Liouville-type obstructions, so we know that the complex plane Cn

is not biholomorphic to certain bounded domains (e.g. the unit ball or polydisc). However, there is

no high-dimensional analogue of the Uniformisation Theorem. In general, complex domains carry

intrinsic complex-analytic invariants that obstruct biholomorphism. For n > 1, many bounded

domains are not biholomorphically equivalent.

Definition 2.5. Let X be a complex manifold, and f : X → C a function. We call f holomorphic

if, for all charts (U, ϕ) in the (maximal) atlas, f ◦ ϕ is holomorphic in the sense of Section 1.

Definition 2.6. Let X,Y be complex manifolds and f : X → Y a continuous function. The map

f is said to be holomorphic if for all charts (U, ϕ) of X and (V, ψ) of Y , the map

ψ−1 ◦ f ◦ ϕ

is a holomorphic map in the sense of Section 1.
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Definition 2.7. Let X be a complex manifold of dimension n, and Y ⊆ X.

We say Y is an (embedded) complex submanifold of X of dimension k if for each y ∈ Y there

exist an open neighbourhood U of y and local holomorphic coordinates (z1, . . . , zn) on U such that

Y = Z(zk+1, . . . , zn).

We will usually require Y to be closed in X. With the definition above, it is easy to see that

Proposition 2.8. A complex submanifold is a complex manifold such that the inclusion map ιY :

Y ↪→ X is injective and holomorphic.

Conversely, a holomorphic map f : Y → X is called an embedding if it is injective, locally closed,

and with injective differential Df : TyY → Tf(y)X for all y ∈ Y . It follows easily that f is an

embedding if and only if f(Y ) is a complex submanifold of X, biholomorphic to Y .

As in the smooth case, we can produce examples of complex submanifolds via the holomorphic

implicit function theorem:

Theorem 2.9. Let f : X → Y be a holomorphic map between complex manifolds of dimensions n

and m respectively, and let y ∈ Y such that the differential Dfx : TxX → TyY is surjective for all

x ∈ f−1(y). Then f−1(y) is a complex submanifold of dimension n−m.

A point y satisfying the conditions of the theorem above is called a regular point (or value, if

Y = C). We have

Corollary 2.10. Let f : Cn → C be a holomorphic function and c a regular value, then Z(f − c) =
f−1(c) is a complex hypersurface (complex submanifold) of complex codimension 1.

Unfortunately, one needs to work a bit harder if one is interested in finding examples of compact

complex submanifolds.

Exercise 2.11. The only compact complex submanifolds of Cn (when considered as submanifolds

of Cn) are discrete points.

Let us introduce the first compact example, which will play a prominent role throughout the course.

The complex projective space CPn is the moduli space of complex lines (or dually hyperplanes) in

Cn+1. It can be realised as the quotient

CPn ∼= (Cn+1 \ {0})/C∗ ,

where the C∗-action is given by z 7→ λz.

The complex projective space CPn is a compact n-dimensional complex manifold.

Let us define homogeneous coordinates [z0, . . . , zn] on CPn. For i = 0, . . . , n, define a chart (Ui, ϕi)

on CPn by Ui = Cn and ϕi : Cn → CPn given by

ϕi : (w1, . . . , wn) 7−→ [w1, . . . , wi, 1, wi+1, . . . , wn].

This is a homeomorphism with the open subset

ϕi(Ui) = {[z0, . . . , zn] ∈ CPn : zi ̸= 0} in CPn.

14



For 0 ≤ i < j ≤ n, the transition function ϕij = ϕ−1
j ◦ ϕi is given by

ϕij : Cn \ {zj = 0} → Cn \ {zi = 0}

(z1, . . . , zn) 7−→ (
z1
zj
, . . . ,

zi
zj
,
1

zj
,
zi+1

zj
, . . . ,

zj−1

zj
,
zj+1

zj
, . . . ,

zn
zj

) .

The ϕij ’s are clearly biholomorphisms. So {(Ui, ϕi)}i=0,...,n+1 forms an atlas of CPn, that extends
to the corresponding maximal atlas.

Now, we have the following example of complex submanifolds:

Proposition 2.12. Let p : Cn+1 \ {0} → C a homogeneous polynomial such that 0 is a regular

value of p, and consider

X = {[z0, . . . , zn] ∈ CPn
∣∣ (z0, . . . , zn) ∈ Z(p)} .

Then X is a well-defined compact complex submanifold of CPn.

Proof. X is well-defined, since p is homogeneous, so p(z) = 0 implies p(λz) = 0 for all λ ∈ C∗.

Now, X is covered by the charts Vi = (X ∩ Ui), where Ui are the standard charts for CPn used

above. On each Vi, X is described by the vanishing of p(z0, . . . , zi−1, 1, zi+1, . . . zn), and Theorem

2.9 concludes the proof.

We give two examples:

Example 2.13. For d ∈ N+, the set X = (zd0 + zd1 + zd2) ⊆ CP2 is a Riemann surface of genus

g = (d−1)(d−2)
2 .

Example 2.14. The set Y = Z(z20+· · ·+z23) ⊆ CP3 is a projective complex manifold biholomorphic,

CP1 × CP1.

Of course, one may ask how general the condition for 0 to be a regular value of a homogeneous

polynomial. We leave it as an exercise to show that

Exercise 2.15. The set of homogeneous polynomials for which 0 is a regular value is generic.

More generally, one has

Proposition 2.16. Let (p1, . . . pk) : Cn+1\{0} → Ck a collection of homogeneous polynomials such

that (0, . . . , 0) is a regular value. Then
(
Z(p1) ∩ · · · ∩ Z(pn)

)
/C∗ ⊆ CPn is a complex submanifold

of dimension n− k, called a complete intersection.

More generally, a projective variety is a subset X of CPn which is locally defined by the vanishing

of finitely many homogeneous polynomials.

Projective complex manifolds allow us to consider a large number of examples of complex manifolds.

Moreover, since they are defined using polynomials, they can be studied using algebraic techniques,

giving rise to complex algebraic geometry.

In the opposite direction, one may consider under what conditions one can guarantee that a compact

complex manifold X can be realised as a projective complex manifold. The answer to this question

is fully understood and follows from two important results, Chow’s Theorem and the Kodaira

Embedding Theorem, which we will prove during this course.

Complex Lie groups also provide important examples of complex manifolds:

15



Definition 2.17. A complex Lie group is a group G that is also a complex manifold such that

multiplication and inversion are holomorphic maps.

Examples include the general linear groups GLn(C), special linear groups SLn(C), complex tori,

etc.

Proposition 2.18. Let G be a complex Lie group acting holomorphically on a complex manifold

X. If the action is free and proper, then the quotient X/G carries a canonical complex manifold

structure for which the projection X → X/G is a holomorphic submersion.

Proof. See [Wel08, Prop. 5.3].

As a direct application of this proposition, we give two further examples of complex manifolds:

Hopf and Iwasawa manifolds.

Hopf manifolds are examples of compact complex manifolds obtained as quotients of Cn \ {0} by a

discrete group generated by contractions. For a concrete example, let α ∈ (0, 1) and

HA = (Cn \ {0})/ ∼α

where z ∼α w if z = αnw for some n.

Remark 2.19. Hopf manifolds are diffeomorphic to S2n−1 × S1 (think in polar coordinates) and

provide important examples in complex geometry, as we shall see.

Finally consider U ⊆ GL(3,C) the subgroup of upper-triangular matrices

U =

1 z1 z2

0 1 z3

0 0 1


and its subgroup UZ = U∩GL(3,Z[i]). The group UZ acts by translations (w1, w2, w3)·(z1, z2, z3) 7→
(z1+w1, z2+w2, z3+w3), which is a free and proper action, so the quotient is a complex manifold,

known as the Iwasawa manifold I = U/UZ.

The first and third coordinate provide a holomorphic submersion f : I→ C/Z[i]×C/Z[i], with the

fibres given by the remaining coordinate, biholomorphic to C/Z[i].

2.1 Almost complex structures

We now introduce the second definition of complex manifolds, via almost complex structures. The

idea is to consider a weaker notion of complex structures and study the relation between the two.

The idea is the following: Let X be a complex n-manifold in the sense of Definition 2.2. Then, the

underlying topological manifold carries a natural smooth real 2n-manifold XR. Its tangent bundle

TXR inherits the structure of a complex vector bundle, which is reflected in the existence of a

bundle endomorphism J ∈ C∞(End(TXR) such that J2 = − Id2n fiberwise. This motivates the

notion of an almost complex structure:

Definition 2.20. Let X be a real 2n-manifold. An almost complex structure J on X is the choice

of a section J in C∞(End(TXR)) satisfying the condition J2 = − Id2n.

A manifold X equipped with an almost complex structure J is called an almost complex manifold.
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Any complex manifold in the sense of Definition 2.2 induces a real manifold X with an almost

complex structure J . The converse is not true, as we shall see.

Since an almost complex structure J furnishes the tangent space with the structure of a complex

vector space pointwise, we can define the analogue notions of holomorphic functions and maps.

Definition 2.21. Let (X,J) be an almost complex manifold and f : X → C a smooth function.

We say f is J-holomorphic function if

df ◦ J = idf .

Similarly, we have

Definition 2.22. Let (X, I) and (Y, J) be almost complex manifolds and f : X → Y a smooth

map. We say f is a pseudo-holomorphic map if

df ◦ I = J ◦ df .

Before proceeding, let us say a few words about the existence of almost complex structures.

Unlike the case of complex strucutres, we are not requiring that our structure solves any PDEs (the

transition maps being holomorphic), just the existence of a special section of the endomorphism

bundle End(TM) (or the reduction of the frame bundle to a principal GL(n,C)-bundle). This

problem is well-understood from the point of view of classifying spaces, and it allows us to phrase

necessary and sufficient conditions for the existence of an almost complex structure in terms of very

explicit topological conditions in low dimensions:

Proposition 2.23. Let M2n be a closed manifold

(i) For n = 1, M admits an almost complex structure if and only if M is orientable (equiv.

w1(M) = 0).

(ii) For n = 2, M admits an almost complex structure if and only if M is orientable and there

exists h ∈ H2(M,Z) such that

h2 = 3σ(X) + 2χ(X) h ≡2 w2(X) .

We refer the interested reader to [MS74, §12] for an introductory discussion on obstruction theory

on vector bundles.

2.2 The exterior differential and the Nijenhuis tensor

Let us now explore the geometry of almost complex manifolds. For the remainder of the section

(Xn, J) will denote an almost complex manifold of (complex) dimension n.

Lemma 2.24. The complexified tangent bundle TXC := TX⊗RC splits as a direct sum of complex

bundles TX1,0 ⊕ TX0,1 of complex dimension n, given by

TX1,0 = ker (i Id−J) TX0,1 = ker (i Id+J)

17



Proof. The minimal polynomial of J is x2 − 1 = (x − i)(x + i), which means J is diagonalisable

over C. The bundles TX1,0 and TX0,1 are the corresponding eigenbundles

Remark 2.25. While TX1,0 and TX0,1 are not in general isomorphic as complex bundles, they are

always isomorphic as real bundles, with the isomorphism given by conjugation.

The decomposition of the complexified tangent bundle into holomorphic and anti-holomorphic parts

trickles down into all associated vector bundles. In particular, we have the following decomposition

of exterior k-forms:

k∧
T ∗M ⊗ C =

⊕
p+q=k

p,q∧
T ∗M

p,q∧
T ∗M :=

p∧(
T ∗X1,0

)
⊗

q∧(
T ∗X1,0

)
.

We denote the space of smooth sections of
∧p,q T ∗M by Ap,q = Γ(X,

∧p,q T ∗M).

There is a more abstract way of understanding this decomposition. An almost complex carry a

reductio of the structure group GL(n,C) ⊂ GL(2n,R), and the decomposition of k- forms into

(p, q)-forms corresponds to decomposition of Λk(R2n)∗ ⊗R C into irreducible representations of

GL(n,C).
We can study how the exterior differential behaves with respect to this decomposition. We have

the following:

Proposition 2.26. There exists operators ∂ : Ap,q → Ap+1,q and µ : Ap,q → Ap+2,q−1 such that

the exterior differential d decomposes as

d = µ+ ∂ + ∂ + µ ,

with ∂ and µ are the conjugate operators to ∂ and µ respectively.

Proof. The exterior differential d is a local operator. Any (p, q)-form γ can be written down locally

as

γ =
∑

|I|=p,|J |=q

fI,J α
I ∧ αJ

with {α1, . . . , αn} a local basis of A1,0.

Lemma 2.27. The operators ∂ and µ satisfy the following properties:

(i) the Leibniz rule,

(ii) ∂ is C-linear and µ is function linear, and

(iii) the following identities hold:

µ∂ + ∂µ = 0 , ∂2 + ∂µ+ µ∂ = 0 ,

µ2 = 0 , µµ+ ∂∂ + ∂∂ + µµ = 0 .

Proof. Exercise.
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Since µ is function-linear, we can identify the operator µ acting on (0, 1)-forms with a tensor

NJ ∈ Γ
(
X,Hom(T ∗X0,1,

∧2 T ∗X1,0)
)
such that µ(α) = −NJ(α) for α ∈ A0,1.

The tensor NJ is known as the Nijenhuis tensor and will play a key role in our discussion. Under

the canonical identification Hom(T ∗X0,1,
∧2 T ∗X1,0) ∼=

∧2 T ∗X1,0 ⊗ TX0,1, we can view NJ as a

skew-symmetric map

NJ : TX1,0 × TX1,0 → TX0,1 .

Lemma 2.28. Under the identification above, the Nijenhuis tensor is given by

NJ(X,Y ) = ([X,Y ])0,1 .

Proof. Let α be a (0, 1)-form and X,Y J-holomorphic vector fields. By the definition of µ and NJ ,

we have that
(
NJ(α)

)
(X,Y ) = −dα(X,Y ).

Now, we can expand the right-hand side using the usual formula dα(X,Y ) = Xα(Y ) − Y α(X) −
α([X,Y ]). The terms α(X) and α(Y ) by bidegree reasons, and α([X,Y ]) only depends on the

(0, 1)-part of the Lie bracket since α is a (0, 1)-form.

Exercise 2.29. The usual definition of the Nijenhuis is

ÑJ(X,Y ) = [X,Y ] + J([JX, Y ] + [X,JY ])− [JX, JY ] .

Prove that the two definitions are equivalent (up to complexification and conjugation).

All in all, we have almost proved the following:

Proposition 2.30. On an almost complex manifold, the following are equivalent:

(i) µ = 0,

(ii) The subbundle TX1,0 is involutive,

(iii) ∂2 = 0.

Proof. The equivalence between (i) and (ii) follows from Lemma 2.28. Item (i) implies (iii) by

Lemma 2.27. Thus, we only need to show that (iii) implies (ii).

It suffices to show that ∂f([X,Y ]) = 0 for a function f and X,Y ∈ TX1,0. Now, we have

0 = ∂ 2f(X,Y ) = (d∂f)(X,Y ) = X(∂f(Y ))− Y (∂f(X))− ∂f([X,Y ])

= X(df(Y ))− Y (df(X))− ∂f([X,Y ]) = df([X,Y ])− ∂f([X,Y ])

= ∂f([X,Y ]) .

An almost complex structure is called integrable if any of the above conditions is satisfied, motivated

by the following computation:

Lemma 2.31. Let (X,J) be a complex manifold. Then NJ ≡ 0.
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Proof. Let {z1, . . . , zn} be local holomorphic coordinates. Then {dz1, . . . , dzn} is (pointwise) a basis
for T ∗X1,0. In particular any α ∈ A1,0 can be locally written as

α =
n∑
k=1

fkdzk ,

In particular, we have

dα =

n∑
j,k=1

(
∂fk
∂zj

dzj +
∂fk
∂zj

dzj

)
∧ dzk .

So the vanishing of the Nijenhuis tensor is a necessary condition for (X, J) to be a complex manifold.

In fact, it is also sufficient:

Theorem 2.32 (Newlander–Nirenberg). An almost complex manifold (X,J) admits a compatible

complex structure if and only if the almost complex structure J is integrable, i.e. NJ ≡ 0

The proof of the Newlander–Nirenberg amounts to constructing local J-holomorphic coordinates.

The details of the proof are relatively technical and involved; therefore, we will skip them. You can

find a complete proof in [Dem12]

Therefore, one could define a complex manifold as a manifold equipped with an integrable almost

complex structure.

Remark 2.33. In fact, one can take a more systematic approach to these questions from the point of

view of G-structures. In that framework, the existence of an almost complex structure corresponds

to a reduction of the frame bundle to a principal GL(n,C)-bundle, the vanishing of the Nijenhuis

tensor corresponds to the structure being 1-integrable, and the Newlander-Nirenberg theorem says

that there are no further obstructions from being 1-integrable to being integrable.

We will (hopefully) revisit the world of G-structures when we discuss the Kähler condition in

Section 8.

A straightforward application of the Newlander-Nirenberg is the following:

Corollary 2.34. Let ι : Z ↪→ X be an almost complex submanifold of a complex manifold. Then

Z is a complex submanifold of X

2.3 Cohomologies in complex manifolds

As part of our discussion, we saw that (almost) complex manifolds carry natural operators that

square to 0. In particular, this allows us to consider new cohomology theories for these operators.

Remark 2.35. The case of almost complex manifolds is not particularly amenable to having a good

cohomology theory since the operator µ is of order 0, so cohomology groups will contain little

interesting information. However, one can take this further to produce an interesting cohomology

theory, but more elaborate tools are needed to realise this; see [CW21] for further details.

From now on, we restrict ourselves to the case of complex manifolds. Recall that, since d2 = 0 and

d = ∂ + ∂ on a complex manifold, we have ∂2 = ∂
2
= ∂∂ + ∂∂ = 0. We can define four different

cohomology theories on X:
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Definition 2.36. Let (X, J) be a complex manifold.

• The Dolbeault cohomology

Hp,q

∂
(X) =

ker
(
∂ : Ap,q(X)→ Ap,q+1(X)

)
im
(
∂ : Ap,q−1(X)→ Ap,q(X)

) .
• The de Rham cohomology

Hk
dR(X) =

ker
(
d : Ak(X)→ Ak+1(X)

)
im
(
d : Ak−1(X)→ Ak(X)

) .
item The Bott–Chern cohomology

Hp,q
BC(X) =

(
ker ∂ ∩ ker ∂

im ∂∂

)p,q
• The Aeppli cohomology

Hp,q
A (X) =

(
ker ∂∂

im ∂ + im ∂

)p,q
.

These are all well-defined, and there are canonical inclusion maps between the different cohomolo-

gies, induced by inclusion and projection:

Hp,q
BC(X)

Hp,q
∂ (X) Hp+q

dR (X) Hp,q

∂
(X)

Hp,q
A (X)

where Hp,q
∂ (X) are defined analogously to the Dolbeault cohomology groups, and conjugation yields

the isomorphisms Hp,q
∂
∼= Hq,p

∂
.

We conclude this section by computing the Dolbeault cohomology groups Hp,q

∂
on a polydisc Dε ⊆

Cn, for ε = (ε1, . . . , εn), with εi =∞ allowed. First, we need

Lemma 2.37 (Baby ∂-Poincaré Lemma). Let U ⊆ C be an open set containing the closed ball Bε.

For any α = fdz ∈ A0,1(U), the function

g =
1

2πi

∫
Bε

f(w)

w − z
dw ∧ dw

satisfies α = ∂g on Bε.

Proof. Let us prove that α = ∂g in a neighbourhood V of z0 ∈ Bε. Take ψ a bump function such

that ψ|V ≡ 1 and supp(ψ) ⊆ Bε, and consider the decomposition f = ψf + (1 − ψ)f =: f1 + f2,

and the induced one for g. Let us check that g1 is a well-defined smooth function. Since f1 has
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compact support, we can extend it to the entire complex plane, and by the change of coordinates

w = z + reiϕ, we have

1

2πi

∫
Bε

f1(w)

w − z
dw ∧ dw =

1

2πi

∫
C
f(z + reiϕ)

(eiϕdr + ireiϕdϕ) ∧ (e−iϕdr − ire−iϕdϕ)
reiϕ

=
1

π

∫
C
f(z + reiϕ)e−iϕdϕ ∧ dr ,

which is clearly smooth in B.

All that remains is to compute ∂g. Since 1
(w−z) is holomorphic in the complement of V , it follows

from differentiation under the integral sign that ∂g2 = 0. For g1, using the expression above, we

have

∂g1 =
1

π
∂

∫
C
f(z + reiϕ)e−iϕdϕ ∧ dr

=
1

π

∫
C

(
∂f

∂w

∂(z + reiϕ)

∂z
+
∂f

∂w

(
∂(z + reiϕ)

∂z

))
e−iϕdϕ ∧ dr

=
1

π

∫
C

∂f

∂w
e−iϕdϕ ∧ dr = 1

2πi

∫
B

∂f

∂w

dw ∧ dw
w − z

= f(z) ,

where the second line follows from the chain rule from Lemma 1.3, we undid the change of variables

in the third line, and the fourth line follows by the (general) Cauchy Integral Formula, Equation

(3).

By induction on the dimension and bidegree, one shows

Lemma 2.38 (∂-Poincaré lemma). Let U ⊆ Cn be an open set containing the closed polydisc Dε.

For q > 0, if α ∈ Ap,q(U) is ∂-closed, there exists β ∈ Ap,q−1(Dε) such that α = ∂β on the polydisc.

Proof. See [Huy05, Prop. 1.3.8].

We can now prove the Dolbeault–Grothendieck lemma:

Proposition 2.39. Let Dε be a polydisc in Cn. Then

Hp,q

∂
(Dε) =

holomorphic (p-forms) q = 0 ,

0 q > 0 .

Proof. The idea is to exhaust the polydisc Dε by a sequence of approximating polydiscs Dεi , and

show that we can choose the approximating exact terms so that they do not change inside the

smaller polydisc.

If q > 1, the difference βi − βi−1 will then be ∂-closed, so by the ∂-Poincaré lemma, we can choose

γi such that ∂γ = βi − βi−1. Take ψ a bump function supported on Dεi with ψ|Dεi
= 1 and set

β̂i+1 = βi+1 + ∂(ψγ). The sequence β̂i has the desired properties. The case q = 1 follows a similar

idea, where now ∂γ is replaced by a suitable holomorphic polynomial. Full details can be found in

[Huy05, Cor. 1.3.9].
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3 Sheaves and their cohomologies

We now introduce the language and techniques of sheaf theory. While we will not use them to their

fullest extent, they are a convenient tool for presenting and proving some of our results, especially

when considering cohomology and vector bundles. A more detailed discussion can be found in

[Wel08] and references therein. For a more thorough and comprehensive discussion using derived

functors, we refer the reader to [Har77, §3].

Definition 3.1. A presheaf F of abelian groups on a topological space X is given by:

(i) For every open set U ⊆ X, an abelian group F(U)

(ii) For every inclusion V ⊆ U , a group morphism F(U)→ F(V ) (restriction map)

such that rUU = id and rVW ◦ rUV = rUW for W ⊆ V ⊆ U .

Definition 3.2. A presheaf is called a sheaf if for every family of sections si ∈ F(Ui), i ∈ I, with
si|Ui∩Uj = sj |Ui∩Uj , there exists a unique section s ∈ F(U) such that s|Ui = si.

Equivalently, the sequence:

0→ F(U)→
∏
i

F(Ui)→
∏
i,j

F(Ui ∩ Uj)

is exact, where the second map is (si) 7→ (si|Ui∩Uj − sj |Ui∩Uj ).

We can now give a (perhaps) more intuitive definition of a stalk as a direct limit of a presheaf.

Definition 3.3. The stalk of a presheaf F at x ∈ X is:

Fx := lim−→
x∈U
F(U) =

⋃
x∈U
F(U)/ ∼

where sU ∼ sV if sU |W = sV |W for some x ∈W ⊆ U ∩ V .

Associated with a presheaf, we have an associated topological space:

Definition 3.4. For a presheaf F , define its Étale space:

Ét(F) :=
⋃
x∈X
Fx

p−→ X with p−1(x) = Fx

The sets [U, s] = {sx | x ∈ U} for U open and s ∈ F(U), form a basis for a topology on Ét(F), and
p is a local homeomorphism.

The sheafificationF+ of a presheaf F is defined by:

F+(U) = {s : U → Ét(F) | s is a continuous section}

There is a natural map F(U) → F+(U) compatible with restrictions. If F is a sheaf, this map is

an isomorphism.

An easy (but important) example is that of the constant presheaf and the locally constant sheaf:
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Example 3.5. If Fconst is the constant presheaf with Fconst(U) = A, then:

Ét(Fconst) = X ×Adisc, (Fconst)+ = A

Given a morphism of sheaves, we can study the associated kernel and image. First, we have

Lemma 3.6. Let φ : F → G be a morphism of sheaves. Then the presheaf kerφ is a sheaf.

Proof. To prove that kerφ is a sheaf, we need to prove that, for Uopen and {Ui} an open cover of

U , we have

(i) (Existence) if si ∈ kerφ(Ui) such that si|Ui∩Uj = sj |Ui∩Uj , then there exists s ∈ kerφ(U) such

that s|Ui = si for all i;

(ii) (Uniqueness) if s ∈ kerφ(U) and s|Ui = 0, then s = 0.

To show (i), notice that the candidate s exists in F(U) since F is a sheaf. Thus, we only need

to show that s ∈ kerφ(U). Indeed, φ(si) = 0 by hypothesis, and since G is also a sheaf, this glue

together to show that φ(s) = 0, as needed. Uniqueness follows readily since F is a sheaf.

In general, however the presheaves U 7→ imφU and U 7→ cokerφU are not sheaves. For instance,

one may consider the image presheaf of the exponential map exp : OC → O∗
C. Then, for an open

set U , exp(U) is the ring of holomorphic functions on U with a well-defined logarithm. But taking

U1 = C \ {x ≥ 0} and U2 = C \ {x ≤ 0} suffices to see that the image presheaf is not a sheaf, as

there is no logarithm defined in C \ {0}.

Definition 3.7. For a morphism φ : F → G of sheaves, we define:

• The image sheaf : imφ := (U 7→ imφU )
+

• The cokernel sheaf : cokerφ := (U 7→ cokerφU )
+

A sequence F φ−→ G ψ−→ H is called exact at G if kerψ = imφ.

Similarly, we say the morphism φ is injective if 0→ F φ−→ G is exact; and surjective if F φ−→ G → 0

is exact.

We have the following useful characterisation of exactness:

Lemma 3.8. The sequence F φ−→ G ψ−→ H is exact iff Fx
φx−→ Gx

ψx−→ Hx is exact for all x ∈ X.

Proof. Exercise.

The following sequences are examples of exact sequences:

0→ OC
(z−p)·−−−−→ OC → SC(p)→ 0

0→ Z 2πi−−→ OX
exp−−→ O∗

X → 0

0→ C→ A0
X,C

d−→ A1
X,C → . . .

0→ ΩpX → A
p,0
X,C

∂−→ Ap,1X,C → · · ·

0→ Ip → OX → SX(p)→ 0

where
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• OX is the sheaf of holomorphic functions on X,

• AkX,C (resp. Ap,qX,C) is the sheaf of smooth sections of
∧k T ∗X (resp.

∧p,q T ∗X),

• IY is the sheaf of vanishing holomorphic functions on a complex submanifold, Y ⊆ X

IY (U) :=
{
f ∈ OX(U)

∣∣ f |Y = 0
}

• SX(0) is the skyscraper sheaf, defined as

SX(p)(U) =

C if p ∈ U

0 otherwise
.

, The reader is encouraged to go through these examples in detail and verify that they are exact

sequences of sheaves, as they will appear repeatedly throughout the course.

Given a continuous map f : X → Y between topological spaces, we get induced maps on sheaves

on them.

Definition 3.9. Let f : X → Y a continuous map, F a sheaf on X and G a sheaf on Y .

• The direct image sheaf of F is defined as f∗F(U) = F(f−1(U)) for U ⊆ Y .

• The inverse image sheaf of G is defined as f−1G(U) = lim
f(U)⊆V

G(V ), where the direct limit

runs over all open subsets V of Y that contain f(U).

One needs to check that the definitions are indeed well-posed, i.e. that the presheaves defined above

are indeed sheaves; but we omit that.

The direct and inverse image sheaves satisfy some nice properties:

Lemma 3.10. Let f : X → Y and g : Y → Z be continuous maps. Then,

• g∗ ◦ f∗ = (g ◦ f)∗ an f−1 ◦ g−1 = (g ◦ f)−1,

• f−1 is exact (i.e. it preserves exactness),

• f∗ and f−1 are adjoint to each other: Hom(f−1F ,G) = Hom(F , f∗G).

Lemma 3.11. Consider ι : Z ↪→ X a continuous embedding, and F a sheaf on X. Let F|Z = ι−1F .
Then,

• if Z = {x} is a point, F|Z = Fx,

• if Z is closed, F(Z) = F|Z(Z), and

• if Z is open, F|Z(V ) = F(Z ∩ V ).

We omit the proofs of these lemmas. Finally, for completeness, we introduce the following definitions
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Definition 3.12. A ringed space is a pair (X,R) where R is a sheaf of rings on X.

A morphism of ringed spaces (X,R) → (Y,S) is a continuous map f : X → Y together with a

morphism of sheaves of rings f−1S → R.

Definition 3.13. Let (X,R) be a ringed space. A sheaf of R-modules is a sheaf of abelian groups

M with a map R×M→M such thatM(U) is an R(U)-module for all open U .

Examples of ringed spaces are smooth manifolds, with R = C∞X (= A0
X,R), and complex manifolds,

with R = OX . Examples of R-modules are discussed in the exercises.

3.1 Sheaf cohomology

Let us now discuss the issue of exactness (or rather its failure). We saw (or rather left as an

exercise) that taking stalks is an exact operation. More generally, we have

Lemma 3.14. Let

0→ F → G → H → 0

be a short exact sequence of sheaves. Then, for any U , we have

0→ F(U)→ G(U)→ H(U)

Proof.

In general, we lose exactness on the right, as exemplified by the fact that the exponential map

exp : OC → O∗
C is not surjective when evaluated over U = C \ {0}.

Cohomology is then introduced as a measure of failure for right-exactness. The correct way to

understand sheaf cohomology is via the theory of derived functors, which is unfortunately beyond

the scope of this course. Instead, we will present an ad-hoc construction for it.

Definition 3.15. A sheaf I is injective if for any injection A ↪→ B and map A → I, there exists

a map B → I making the diagram commute.

A B

I

Definition 3.16. A complex of sheaves is a sequence:

· · · → F i−1 d−→ F i d−→ F i+1 → · · ·

A resolution of a sheaf F is a complex F• with a map F ↪→ F0 that is exact. An injective resolution

is a resolution where all Ii are injective.

Definition 3.17. The sheaf cohomology is defined as:

H i(X,F) := H i
(
Γ(X, I•)

)
for an injective resolution F → I•.

26



Notice that, in particular H0(X,F) = Γ(X,F) = F(X). A priori, this definition is subject to the

existence of injective resolutions and a choice thereof. Fortunately, we have:

Proposition 3.18.

(i) Every sheaf F admits an injective resolution. (The category of sheaves has enough injectives.)

(ii) For a morphism of sheaves φ : F → G and injective resolutions I• and J • of F and G, there
exist φk : Ik → J k such that

0 F I0 I1 I2 . . .

0 G J 0 J 1 J 2 . . .

φ φ0 φ1 φ2

commutes. Moreover, any choice of maps {φk} induces the same maps on cohomology.

(iii) Injective sheaves are flabby, i.e. the map F(U)→ F(V ) is surjective for any V ⊆ U open.

(iv) If

0→ F → G → H → 0

is exact and F is flabby, then

0→ F(U)→ G(U)→ H(U)→ 0

for all open subsets U .

In particular, this implies that the sheaf cohomology groups are well-defined, and we have

Theorem 3.19. Consider the short exact sequence of sheaves

0→ F → G → H → 0 .

Then there exists a long exact sequence of cohomology:

0→ H0(X,F)→ H0(X,G)→ H0(X,H)→ H1(X,F)→ H1(X,G)→ H1(X,H)→ H2(X,F)→ . . .

is exact

Proof. Use the fact that the injective resolution is flabby, along with the snake lemma/ diagram

chasing, to construct the connecting morphisms.

Whilst injective sheaves and injective resolutions are convenient to define sheaf cohomology, they

tend to be quite cumbersome and hard to construct in explicit situations. Instead, it is more

convenient to work with acyclic sheaves and resolutions

Definition 3.20. A sheaf A is acyclic if H i(X,A) = 0 for i > 0. An acyclic resolution is a

resolution A• by acyclic sheaves Ai.
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The following result captures the convenience of working with acyclic resolution.

Theorem 3.21. Let A• be an acyclic resolution of F , then:

H i(X,F) = H i(Γ(X,A•))

Proof. Split the resolution into short exact sequences:

0→ Ki → Ai → Ki+1 → 0

with Ki := ker
(
Ai → Ai+1

) ∼= im
(
Ai−1 → Ai

)
.. The long exact sequence of cohomology yields the

desired result.

Exercise 3.22. Write down the missing details of the proof above.

We now claim a fact that will be of great importance, but we do not have the time to prove it:

Theorem 3.23. All sheaves of AR-modules are acyclic.

The proof of the theorem relies on constructing a particular type of acyclic sheaves called soft, via

a partition of unity on X. This dependence on the existence of a partition of unity is key in the

construction.

As a corollary of this fact, we have

Corollary 3.24. Let X be a smooth manifold. Then

Hk
dR(X,R) ∼= Hk(X,R) .

Similarly, on a complex manifold, we have

Hp,q

∂
(X) ∼= Hq(X,Ωp)

Proof. The smooth Poincaré lemma implies that the locally constant sheaf R admits the acyclic

resolution

A•
X,R := 0→ A0

X,R
d−→ A1

X,R
d−→ A2

X,R
d−→ . . .

Similarly, the ∂-Poincaré lemma implies that sheaf of holomorphic p-forms admits the acyclic

resolution

Ap,•X,R := 0→ Ap,0X,R
∂−→ Ap,1X,R

∂−→ Ap,2X,R
∂−→ . . .

3.2 Čech cohomology

We now introduce another, more combinatorial, cohomology theory for sheaves. Whilst it is more

”hands-on” and computationally easy to work with, one does not have all the good properties of

sheaf cohomology ”on the nose”.

Definition 3.25. Let F be a sheaf on X and U ={Ui}i∈I an open cover. For each σ = (i0, . . . , iq) ∈
Iq+1, consider Uσ = Ui0 ∩ . . . Uiq and ισ : Uσ ↪→ X the inclusion.
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(i) The sheaf of Čech chains with respect to the cover U is:

Cq(U ,F) =
∏

σ∈Iq+1

(ισ)∗(ισ)
−1F

(ii) The Čech boundary operator is:

δ : Cq(U ,F)→ Cq+1(U ,F)

(sσ)σ 7→
q+1∑
k=0

(−1)k (si0,...,ǐk,...iq+1
)|Ui0,...,iq+1

A (tedious) computation shows that δ2 = 0, so
(
Cq(U ,F), δ

)
is a complex of sheaves. In particular,

we can define the (relative) Čech cohomology groups:

Ȟq(U ,F) :=
ker
(
Cq(U ,F) δ−→ Cq+1(U ,F)

)
im
(
Cq−1(U ,F) δ−→ Cq(U ,F)

) .

In degree zero, we have

C0(U ,F) =
∏
Ui

F(Ui)
δ−→
∏
Ui∩Uj

F(Ui ∩ Uj) = C1(U ,F)

with δ(s)ij = sj |Ui∩Uj − si|Ui∩Uj . Since F is a sheaf, Ȟ0(U ,F) = ker δ = H0(X,F). However, the

higher cohomology groups will depend on the chosen cover. To remedy this, we define

Definition 3.26. Let X be a topological space and F a sheaf. We define the Čech cohomology

groups as

Ȟq(X,F) = lim
U cover

Ȟq(U ,F) ,

where the direct limit is taken over finer and finer covers.

The result that ties up all the discussion is a celebrated result due to Leray:

Theorem 3.27 (Leray’s theorem). : Let X be a smooth manifold. There is an isomorphism:

Hq(X,F) ∼= Ȟq(X,F)

The main idea is to consider a good cover of X, that is, an open cover in which all open sets and

all non-empty intersections of finitely many of them are contractible, and then choosing a partition

of unity subordinate to this open cover.

I have been particularly vague and stated many (deep and hard) results at face value, which the

reader should be pretty unhappy about (I know I am). Unfortunately, I find it the lesser of all

evils, as proceeding in our discussion without the tools of sheaf theory and its cohomologies would

prove nearly impossible. However, establishing and discussing all the material summarised in this

section in detail could take an entire course on its own.
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4 Meromorphic functions and Siegel’s theorem

Let us put together some of the results from the previous sections. In Theorem 1.24 we saw that

the stalk OX,x (equivalently OCn,0) is an integral domain since it is a UFD, as proved in Theorem

1.24. So one may consider the corresponding field of fractions KX,x := Quot(OX,x). Consider the

following space

Ét(KX) :=
⋃
x∈X
Kx ,

with the topology induced by that of the étale space of OX , and define the following sheaf:

Definition 4.1. The sheaf of meromorphic functions on a complex manifold X is defined as

KX(U) =
{
s : U → Ét(KX)

∣∣ s is continuous and p ◦ s = idU

}
,

with p : Ét(KX)→ X the obvious projection. A meromorphic function is a section of this sheaf.

Note that we have chosen very suggestive notation from the start, and we are treating Ét(KX) as
an étale space, and constructed the sheaf out of it as we did for the sheafification of a presheaf.

This procedure is quite general and does not use any intrinsic properties of holomorphic functions.

Indeed, this can be applied to any ringed space (X,R) as long as the stalks of R are integral

domains. The resulting construction is called the sheaf of rational functions.

Remark 4.2. Note that one might want to abuse notation and write KX = Quot(OX). However,

Quot
(
OX(U)

)
makes no sense for any open U that is not connected, since OX(U) will not be an

integral domain.

Let us study the sheaf of meromorphic functions. First, notice that if X is connected, KX(X) is a

field, and we have an injective map of sheaves 0→ OX
ι−→ KX with ι(f) = f

1 .

Since meromorphic functions are continuous sections s : X → Ét(KX), we have the following

characterization:

Lemma 4.3. Let f ∈ KX(U). Then, for every x ∈ U there exists an open neighbourhood V and

holomorphic functions g, h ∈ OX(V ) such that the stalks gy and hy are coprime and fy =
gy
hy

for

all y ∈ V . Moreover, g and h are unique, up to units in OX(V ).

Proof. Combine the definition of meromorphic functions using the topology of Ét(KX) (and thus

that of Ét(OX)) with the fact that OX,x is a UFD and Lemma 1.25.

In particular, for any meromorphic function f ∈ KX(U), we can define the following two analytic

sets:

Z(f) :=

{
x ∈ U

∣∣∣ fx =
gx
hx
, g(x) = 0

}
P (f) :=

{
x ∈ U

∣∣∣ fx =
gx
hx
, h(x) = 0

}
Notice that when f is actually holomorphic, the definition of Z(f) agrees with our previous defi-

nition Z(f) = f−1(0). In fact, a moment’s thought suffices to notice that the sets Z(f) and P (f)

are disjoint, and that f |U\P (f) is holomorphic.

We know that, on a compact connected complex manifold, the ring of holomorphic functions is

always just C. Let us now study how ”big” the field of meromorphic functions can be. Recall from

your algebra course
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Definition 4.4. Let K be a field and L a field extension over K. We say that a collection

{l1, . . . , lk} ⊆ L is transcendentally independent if ϕ(l1, . . . , lk) ̸= 0 for all polynomials ϕ ∈
K[x1, . . . , xk] .

The transcendence degree of the extension L|K is defined as

tr. degK(L) = sup
k

{
k
∣∣ ∃ l1, . . . lk transcendentally independent over K

}
We have

Theorem 4.5 (Siegel’s theorem). Let X be a compact connected complex manifold of dimension

n. Then tr.degC
(
KX(X)

)
≤ n.

Before we can prove this, we need the following lemma:

Lemma 4.6 (Schwarz lemma). Let ε > 0 and f : Bε(0) → C a holomorphic function with a zero

of order k at 0. Then

|f(z)| ≤ C
(
|z|
ε

)k
,

where C = sup
∂Dε(0)

|f |.

Proof. Fix 0 ̸= z ∈ Dε(0) and consider the function

Fx : Bε(0)→ C

w 7→ w−kf

(
w
z

|z|

)
,

which is holomorphic since f has a zero of order k. On ∂Bε(0), we have |Fx| ≤ Cε−k. By the

maximum principle, the same bound holds for all w ∈ Bε(0). Thus, taking w = |z|, we have

|Fx(|z|)| = |z|−k|f(z)| ≤ Cε−k .

Proof of Siegel’s theorem. The goal is to prove that for all f1, . . . , fn+1 ∈ KX(X), there exists a

polynomial P ∈ K[x1, . . . , xn+1] such that P (f1, . . . , fn+1) = 0.

• Step 0 : Let z ∈ X, so there exists an open neighbourhood U and g1, . . . , gn+1, h1, . . . , hn+1 ∈
O(U) such that fi|U = gi

hi
for all i ∈ {1, . . . , n+ 1}. Moreover, we can assume that gi and hi

are coprime by taking a smaller neighbourhood if necessary, by Lemma 1.25.

Take coordinate charts around z, and consider Vx ⊆ U the image of the ball of radius 1/2

under the chosen chart. Since X is compact, we can find points z1, . . . , zN such that the

family {Vk}k is an open cover of X.

For two neighbourhoods, Uk and Ul, denote ϕkl,i =
gk,i
gl,i
∈ O∗(Uk ∩ Ul), and set

C = max
k,l

sup
z∈Vk∩Vl

∣∣∣∣∣
n+1∏
i=1

ϕkl,i(z)

∣∣∣∣∣ .
Notice that the relation ϕkl,i(z)ϕlk,i(z) = 1 implies C ≥ 1.
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• Step 1 : There exists a polynomial P of degree m such that

Gk = P (f1, . . . , fn+1)
(∏

hi,k

)m
is holomorphic on Uk and vanishes at zk with order M for all k ∈ {1, . . . N}.

Indeed, Gk is clearly holomorphic. The condition that Gk vanishes at order M is equivalent

to ∂αGk = 0, where ∂α := ∂α

∂z1α1 ...∂znαn is the differential operator, and α = (α1, . . . , αn) is a

multindex of size M .

The collection of operators ∂α spans a space of dimension
(
M−1+n

n

)
. Since the space of

polynomials of degree m has dimension
(
m+n+1

m

)
, it suffices to choose m large enough so(

m+ n+ 1

m

)
> N

(
M − 1 + n

n

)
. (6)

• Step 2 : By the Schwarz Lemma 4.6, we have

|Gk(z)| ≤
C

2M

for z ∈ Vk and D = maxk supz∈Vk |Gk(z)|. The goal is to show that D = 0 for an appropriate

choice of m and M .

• Step 3 : Let z ∈ Uk such that |Gk(z)| = D. Thus, for some l ∈ {1, . . . , N} z ∈ Vl and so

D = |Gk(z)| = |Gl(z)| |ϕmkl(z)| ≤
Cm

2M
D .

Thus, the constant D will vanish whenever

m log2(C) < M . (7)

• Step 4 : For suitably chosen m and M , the conditions (6) and (7) can be satisfied simultane-

ously, so D ≡ 0.

Indeed, since
(
m+n+1

m

)
is a polynomial of degree n+ 1 in m and

(
M−1+n
M−1

)
is a polynomial of

degree n in M . Notice that this is the crucial step for which we need to take the polynomial

in n+ 1 variables.

In view of Siegel’s result, we see that the following definition makes sense:

Definition 4.7. The algebraic dimension of a compact connected complex manifold X is

a(X) := tr.degC
(
KX(X)

)
.

As a first computation of the algebraic dimension, we have:

Proposition 4.8. For all n ∈ N, we have a(CPn) = n.
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Proof. By Siegel’s theorem, it suffices to show that a(CPn) ≥ n. Let [Z0 : · · · : Zn] denote

homogeneous coordinates on CPn and C(ξ1, . . . , ξn) the field of rational functions. The map

Φ : C(ξ1, . . . , ξn)→ KCPn(CPn)

f(ξ1, . . . , ξn) 7→ f

(
Z1

Z0
, . . .

Zn
Z0

)
is well-defined, so C(ξ1, . . . , ξn) ⊆ KCPn(CPn).

This proves that the field extension KCPn(CPn)|C(ξ1, . . . , ξn) is algebraic. It is not hard to prove

that, in fact, C(ξ1, . . . , ξn) ∼= KCPn , but we leave it as an exercise to the reader.

5 Holomorphic bundles and Kodaira dimension

Recall the definition of smooth real (resp. complex) vector bundles:

Definition 5.1. A real (resp. complex) vector bundle of rank r over a manifold X is a smooth

manifold E together with a smooth projection π : E → X such that there exists an open cover

{Ui} of X and diffeomorphisms φi : π
−1(Ui)→ Ui × Rr (resp. Cr) such that:

(i) π = pr1 ◦ φi on π−1(Ui), where pr1 denotes the projection to the first factor.

(ii) On Ui ∩ Uj , the transition functions φij = φi ◦ φ−1
j : (Ui ∩ Uj)× Rr → (Ui ∩ Uj)× Rr are of

the form (x, v) 7→ (x, gij(x)v) where gij ∈ C∞(Ui ∩ Uj ,GL(r,R)
)

Therefore, one makes the analogue definition for the holomorphic case:

Definition 5.2. A holomorphic vector bundle of rank r on a complex manifold X is a complex

manifold E together with a holomorphic projection π : E → X such that there exists an open cover

{Ui} of X and biholomorphic maps φi : π
−1(Ui)→ Ui × Cr such that:

(i) π = pr1 ◦ φi on π−1(Ui)

(ii) On Ui ∩ Uj , the transition functions φij = φi ◦ φ−1
j : (Ui ∩ Uj)× Cr → (Ui ∩ Uj)× Cr are of

the form (x, v) 7→ (x, gij(x)v) where gij : Ui ∩ Uj → GLr(C) are holomorphic.

The first obvious example of a holomorphic vector bundle is the holomorphic tangent bundle of a

complex manifold:

Lemma 5.3. For X a complex manifold, the bundle T 1,0X ⊆ TX ⊗ C is holomorphic.

Proof. Let {z1, . . . , zn} be local coordinates on the complex manifold. Then
{

∂
∂z1

, . . . , ∂
∂zn

}
are a

local basis of T 1,0X. The holomorphicity condition on a change of basis between trivialisations is

precisely the condition that X is a complex manifold.

As in the case of smooth vector bundles, any natural construction (in a category theory sense) of

vector spaces gives rise to natural constructions of holomorphic vector bundles. In particular, we

have:

Lemma 5.4. Let E,F be holomorphic vector bundles. Then the following vector bundles are

holomorphic:
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(i) E ⊕ F ,

(ii) E ⊗ F ,

(iii) E∗, the dual of E,

(iv)
∧k E for all k > 0,

Moreover, let φ : E → F a bundle morphism. Then the bundles kerφ and cokerφ are holomorphic.

Vector bundles are classified by the appropriate (Čech) cohomology group:

Proposition 5.5. Up to isomorphism, we have the following correspondences:

• real vector bundles of rank r
1:1←−−−−−→ Ȟ1

(
X,GL

(
r, C∞(X,R)

))
,

• complex vector bundles of rank r
1:1←−−−−−→ Ȟ1

(
X,GL

(
r, C∞(X,C)

))
• holomorphic vector bundles of rank r

1:1←−−−−−→ Ȟ1
(
X,GL

(
r,OX

))
,

where GL(r,F) is the sheaf of invertible rank k matrices with coefficients in the sheaf F .

Proof. Exercise.

Understanding and computing the groups Ȟ1
(
X,GL(r,A)

)
is very hard, and there are no general

results, except for the case r = 1, that we will revisit shortly.

To conclude this introduction, we introduce a generalisation of the Dolbeault operator ∂ to holo-

morphic bundles ∂E .

Proposition 5.6. Let E → X be a holomorphic bundle, and let Ap,qX (E) the space of smooth

(p, q)-forms with values in E. There exists a C-linear operator ∂E : Ap,q(E)→ Ap,q+1(E) such that

(i) it satisfies the Leibniz rule, i.e. ∂E(α ∧ s) = ∂α ∧ s + (−1)p+qα ∧ ∂Es for α ∈ Ap,qX and

s ∈ Ap
′,q′

X (E), and

(ii) it squares to zero, ∂
2
E = 0.

Proof. Clearly, the operator ∂E is local. Let {s1, . . . , sk} be a local trivialisation of E, so any

s ∈ Ap,qX (E) is given by αi ∈ Ap,qX , with s =
∑k

i=1 αi ⊗ si. We define

∂Eα :=

k∑
i=1

∂(αi)⊗ si .

We need to check that this is well-defined. For another local trivialisation {t1, . . . , tk}, there exists

a matrix A = (ψij) ∈ GL(k,O∗
X) such that si =

∑
j ψji ⊗ tj . Thus,

∂Es =

k∑
i=1

∂(αi)⊗ si =
k∑

i,j=1

∂(αi)⊗ (ψji ⊗ tj)

=

k∑
j=1

∂

(
k∑
i=1

αiψji

)
⊗ tj = ∂Es ,

where we crucially used that E is holomorphic, so the transition functions are holomorphic, i.e.

∂ψij = 0.
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Conversely, we have

Theorem 5.7. Let E → X be a complex vector bundle carrying an operator ∂E satisfying the

conditions above. Then E carries a natural holomorphic structure.

The idea of the proof is that the integrability condition ∂
2
E = 0 acts like a ”vanishing” Nijenhuis

tensor, so one can adapt the Newlander-Nirenberg theorem(in fact Frobenius’ theorem is enough)

to produce the holomorphic local trivialising sections. We refer the reader to [Mor07, Thm. 9.2]

for a direct proof using the N-N theorem, and to [DK90, Sec. 2.2] for a more general discussion.

The integrability condition ∂
2
E = 0 allows us to consider a version of Dolbeault cohomology for

vector bundles:

Hp,q
X (E) :=

ker
(
∂E : Ap,qX (E)→ Ap,q+1

X (E)
)

im
(
∂E : Ap,q−1

X (E)→ Ap,qX (E)
) .

Again, the ∂-Poincaré lemma implies that the complex 0→ Ap,0X (E)→ Ap,1X (E)→ . . . is an acyclic

resolution of E ⊗ ΩpX , so

Corollary 5.8. We have Hp,q
X (E) ∼= Hq(X,E ⊗ ΩpX).

5.1 Holomorphic line bundles

Let us now focus on studying line bundles. First, as we anticipated earlier, we have

Lemma 5.9.

(i) Complex line bundles over X are in one-to-one correspondence with elements of H2(X,Z).

(ii) Real line bundles over X are in one-to-one correspondence with elements of H1(X,Z/2Z).

Proof. Consider the exponential sequence

0→ Z 2πi−−−→ AX,C
exp−−→ A∗

X,C → 0 .

We have a long exact sequence of cohomology

· · · → H1(X,AX,C)→ H1(X,A∗
X,C)

c1−→ H2(X,Z)→ H2(X,AX,C)→ . . . . (8)

Since AC is acyclic, the map c1 : H1(X,A∗
C)→ H2(X,Z) is a bijection. Similarly, for the real line

bundle case, one considers the short exact sequence

0→ AX,R
exp−−→ A∗

X,R → Z/2Z→ 0 .

Whilst H1
(
X,GL(r,F)

)
does not carry any additional structure for r > 1, H1(X,GL(1,F) ∼=

H1(X,F∗) always carries the additional structure of an abelian group:

Lemma 5.10. The set H1(X,F∗) carries the structure of an abelian group, where the tensor

product induces the group operation, and inverses are given by dualisation [L−1 := L∗.

Proof. Immediate.
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Corollary 5.11. The maps

c1 : H
1(X,A∗

C)→ H2(X,Z) w1 : H
1(X,A∗

R)→ H1(X,Z/2Z)

are group morphisms.

Let us now focus on the case of holomorphic line bundles:

Definition 5.12. The group of isomorphism classes of line bundles is called the Picard group:

Pic(X) := H1(X,O∗
X).

Again, by using the exponential short exact sequence, we have:

Proposition 5.13.

(i) A complex line bundle L admits a holomorphic structure if and only if c1(L) maps to zero in

H2(X,OX).

(ii) The set of (non-isomorphic) holomorphic structures on a holomorphic line bundle is parametrised

by H1(X,OX)/ im
(
H1(X,Z)

)
.

Proof. Comparing the smooth and holomorphic exponential sequences, we have:

0 Z OX O∗
X 0

0 Z AC A∗
C 0

∼=

The claim follows from the induced map of long exact sequences.

In particular, this discussion shows that, over a complex manifold with H2(X,OX) = 0, any

complex line bundle admits a holomorphic structure. As in the case of almost complex manifolds,

this is not true for higher rank complex bundles, as we shall see.

Let us now introduce the tautological line bundle of the complex projective space CPn:

Proposition 5.14. The tautological line bundle O(−1) on Pn is the line incidence variety:

O(−1) = {(l, z) | z ∈ l} ⊆ Pn × Cn+1

with projection π : O(−1)→ Pn.

Proof. On affine charts Ui = {zi ̸= 0}, we have trivializations:

π−1(Ui) ∼= Ui × C, (l, z) 7→ (l, zi)

The transition functions are ψij(l) =
zi
zj
.

Using the group structure of Pic(CPn), we define

Definition 5.15. For k ∈ Z, define O(k) = O(−1)⊗(−k), withO(−1)⊗0 := OPn .
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Notice that since H2(CP2,Z) ∼= Z is torsion-free, all line bundles above are genuinely different, i.e.

O(k) ∼= O(l) if and only if k = l, both in the holomorphic and complex vector bundle categories.

Moreover, one can ask if O(−1) is a generator of H2(CP2,Z) and if not, what is its multiplicity.

For now, we claim

Theorem 5.16. The line bundle O(1) is a generator of H2(CPn,Z).

The proof requires further work, and we will postpone it until a later section. Another class of

examples of line bundles that will interest us is the following:

Definition 5.17. The canonical bundle of a complex manifold X is the bundle of holomorphic

top-degree forms KX =
∧dimX T ∗X1,0.

There is an interesting class of compact complex manifolds, characterised by their canonical bundle:

Definition 5.18. A compact complex manifold with KX
∼= OX is called (weak) Calabi-Yau.

Remark 5.19. Some authors add the further requirement that
∧p T ∗X1,0 contains no trivial sub-

bundles for 1 ≤ p < dimX. If you are familiar with special holonomy, this is essentially equivalent

to asking the holonomy of X to be irreducible (i.e. not locally a product).

We would like to characterise the canonical bundle of the complex projective space, in virtue of

Theorem 5.16. We have

Theorem 5.20 (Euler Sequence). The holomorphic tangent bundle fits in the short exact sequence

of sheaves:

0→ OCPn →
n⊕
i=0

O(1)→ τPn → 0

Proof. On Cn+1\{0}, take coordinates z0, . . . , zn, and π : Cn+1\{0} → CPn the standard projection.

Let z̃i =
zi
z0

for i ̸= 0 local coordinates in CPn. Then, we have

dz̃i

(
π∗

∂

∂zj

)
= d

(
zi
z0

)(
∂

∂zj

)
=
z0dzi − zidz0

z20

(
∂

∂zi

)
,

so

π∗

(
∂

∂zi

)
=

1

z0

∂

∂z̃i
π∗

(
∂

∂z0

)
= −

n∑
i=1

zi
z20

∂

∂z̃i
.

Hence, for L : Cn+1 → C a linear map, if we set vi = L · ∂
∂zi

, π∗(vi) defines a section of τCPn . In

particular, τCPn is spanned
{
π∗

(
∂
∂zi

)}
for i ∈ {0, . . . , n}, with the relation

n∑
i=0

zi
∂

∂zi
= 0 .

In particular, this implies the claim, where the maps in the short exact sequence are:

0→ OCPn →
n⊕
i=0

O(1) → τCPn → 0

1 7→ (z0, . . . , zn)

(s0, . . . , sn) 7→ π∗

(
n∑
i=0

si
∂

∂zi

)
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In particular, by taking determinants of the Euler sequence, we have

Corollary 5.21. The canonical bundle of Pn is KPn = O(−n− 1) .

Proof. We have

det(τCPn)⊗ det(OCPn) = det

(
n⊕
i=0

O(1)

)
= O(n+ 1) ,

and the claim follows from the fact that KX = det(τX)
∗.

Now, given a holomorphic line bundle L→ X, it is a natural question to study its space of sections.

Let V = ⟨s0, . . . , sn⟩ ⊆ H0(X,L) be a linear subspace of (globally defined) holomorphic sections of

L. We have the following definitions.

Definition 5.22. The base locus of V is the vanishing locus of sections spanning V = ⟨s0, . . . , sn⟩.

BL(V ) :=
{
x ∈ X

∣∣ s0(x) = · · · = sn(x) = 0
}
.

The pluricanonical map of V = ⟨s0, . . . , sn⟩ is defined as

ϕs0,...,sn : X \BL(V )→ CPn

x 7→ [(ψ ◦ s0)(x) : · · · : (ψ ◦ sn)(x)],

for ψ a local trivialisation of L and a choice of homogeneous coordinates on CPn.

As usual, one routinely checks that the objects above are well-defined.

Proposition 5.23. The pluricanonical map ϕs0,...,sn is a well-defined holomorphic map. Moreover,

for two different bases {si} {s′i} of V , there exists a biholomorphism Ψ : CPn → CPn such that

ϕ{si} = Ψ ◦ ϕ{s′i}

This suggests that if one has a line bundle L with ”enough” sections, one can hope to find a

pluricanonical map such that

• it has empty base locus,

• is injective, and

• has injective differential.

Finding sufficient conditions for these conditions to be satisfied is roughly the idea behind Kodaria’s

embedding theorem, which we will prove in Section 10. However, we still have a long way to go

before we can quantify what ”enough” means.

For now, we introduce the concept of Kodaira dimension. The group structure on the space of line

bundles induces a map

H0(X,L1)⊗H0(X,L2)→ H0(X,L1 ⊗ L2) .
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Thus, we can consider the graded ring

R(X,L) =
⊕
k≥0

H0(X,Lk)

with the understanding that L0 = OX . By the identity principle, it follows that R(X,L) is an

integral domain whenever X is connected. In particular, we can consider its field of fractions

Q(X,L). Moreover, since R(X,L) is graded, we can further construct the following subfield of the

field of fractions:

Definition 5.24. Let Q0(X,L) the subfield of Q(X,L) that consists of elements of the form f/g

with f, g ∈ H0(X,Lk) for some k.

The interest in Q0(X,L) is motivated by the following proposition:

Proposition 5.25. For any line bundle L→ X, there is a map Q0(X,L)→ KX(X).

Proof. Fix k ≥ 1 and set L′ = Lk. Consider 0 ̸= s1, s2 ∈ H0(X,L′). We define a meromorphic

function on X as follows.

Choose a trivialising cover (Ui, ψi). Then ψi◦sj define holomorphic functions on U , and so fi =
ψi◦s2
ψi◦s1

is a locally defined meromorphic function. To see that {fi} defines a global meromorphic function,

it suffices to show that it is independent of the choice of trivialisation. Indeed, we have

fj =
ψj ◦ s2
ψj ◦ s1

=
(ψij ◦ ψi) ◦ s2
(ψij ◦ ψi) ◦ s1

=
λψi ◦ s2
λψi ◦ s1

= fi ,

since ψij = λ ∈ C∗ since L′ is a complex line bundle.

Let us now define

Definition 5.26. Let X be a connected compact complex manifold and L → X a holomorphic

line bundle. We define the Iitaka dimension as

κ(X,L) =

tr. degC Q(X,L)− 1 if Q(X,L) ̸= C

−∞ otherwise
.

If L = KX the canonical bundle, we write κ(X,KX) = κ(X) and call it the Kodaira dimension.

We have the following

Proposition 5.27. For any line bundle L→ X, we have

κ(X,L) ≤ a(X) .

Proof. If κ(X,L) = −∞, there’s nothing to prove. Thus, it suffices to prove tr. degC Q(R) − 1 =

tr. degC Q0(R) for any graded ring such that Q(R) ̸= C.
First, for f0, . . . , fk ∈ Q(R(X)) are algebraically independent elements of degree di,

f1
e1

f0
e0 , . . . ,

fk
ek

f0
e0

with ei =
∏
i̸=j dj are algebraically independent elements of Q0(R). Conversely, given f1 . . . , fk ∈

Q0(R) algebraically independent, and f0 ∈ Q(R) \Q0(R), then f0, . . . fk are algebraically indepen-

dent in Q(R).

39



We conclude this section with the computation of the Iitaka dimensions of the line bundles O(k).
First, we need the following result.

Proposition 5.28. The global sections of O(k) are given by:

H0(Pn,O(k)) =

C[z0, . . . , zn]k if k ≥ 0

0 if k < 0
,

where C[z0, . . . , zn]k denotes the space of homogeneous polynomials of degree k.

Proof. Let us prove it for k ≥ 0. Recall that homogeneous polynomials of degree k are in one to one

correspondence with k-linear symmetric forms F . Thus, a polynomial P ∈ C[z0, . . . , zn]k defines a

linear map ϕP : (Cn+1)⊗k → C, and thus a holomorphic map sP : CPn × (Cn+1)⊗k → CPn that is

linear on each fibre. Restricting to O(−k), gives a section of O(k).
Explicitly, for (l;x1, . . . , xk) ∈ O(−k), write xi = λiz for a fixed z ∈ l. Then sP (l;x1, . . . , xk) =

(
∏
i λi)P (z). We need to show that this map is bijective. Injectivity is clear, since if sP ≡ 0, the

polynomial P vanishes at every line so P = 0.

To prove surjectivity, let t ∈ H0(CPn,O(k)) and let sP another section induced by a polynomial of

degree k. Consider the meromorphic function F = t
s0
∈ K(CPn), and the associated meromorphic

function on the punctured space F̃ := F ◦ π ∈ K(Cn+1 \ {0}). Now, G = PF̃ is a homogeneous

holomorphic function on Cn+1\{0} of degree k which extends to Cn+1 by Hartogs’ phenomenon. By

Liouville’s theorem, G is a (homogeneous) polynomial of degree k, which clearly satisfies G|O(−k) =

t, as needed.

The cases k < 0 follow by the fact that a holomorphic line bundle and its dual both admit global

sections if and only if it is isomorphic to the trivial bundle (cf. Exercise Sheet).

We readily have

Corollary 5.29.

κ(CPn,O(k)) =


n if k > 0

0 if k = 0

−∞ if k < 0

Notice that the proof we gave to Proposition 4.8 corresponds precisely to the statement κ(CPn,O(1)) ≤
a(CPn)!

6 Divisors and blow-ups

For convenience we shall always assume that the complex manifolds we work with are connected,

unless otherwise specified. Recall from Section 1, we defined analytic sets and the concept of

irreducibility for analytic germs. We define

Definition 6.1. For X a complex manifolds, a divisor on X is a formal locally finite linear com-

bination:

D =
∑

ai[Yi]
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where Yi are irreducible analytic hypersurfaces and ai ∈ Z. The collection of divisors with its

natural group structure is called the group of divisors and denoted Div(X).

In other words, Div(X) is the free abelian group over the collection of irreducible analytic hyper-

surfaces. In our case, local finiteness translates to the following condition: for all x ∈ X, there

exists an open neighbourhood U such that U ∩D is a finite sum.

Definition 6.2. A divisor D =
∑
ai[Yi] is called effective, and denoted by D ≥ 0, if all ai ≥ 0.

Definition 6.3. Let Y be an irreducible hypersurface, x ∈ Y , U an open neighbourhood in X and

f ∈ KX(U).

The order of f along Y at x, denoted by ordY,x(f) ∈ Z, is defined as the unique integer such that

fx = g
ordY,x(f)
x hx

in KX,x, where g ∈ OX,x is irreducible, and h ∈ O∗
X,x. The order of f along Y ,ordY (f) ∈ Z is the

order of f at x such that Y is irreducible at x. 3

Again, it follows from the good properties of the ring of germs OX,x and Hilbert’s Nullstellensatz

that the order is well-defined. Moreover, it’s not hard to check that it satisfies

ordY (fg) = ordY (f) + ordY (g) .

In particular, we get a group morphism

Φ : K∗
X(X)→ Div(X) (9)

f 7→ (f) :=
∑

ordY (f)[Y ]

where the sum is taken over all irreducible hypersurfaces Y ⊆ X.

An element in the image of Φ is called a principal divisor.

Proposition 6.4. There is an isomorphism H0(X,K∗
X/O∗

X)
∼=−−−−−→ Div(X)

Proof. Elements in H0(X,K∗
X/OX∗) are given by a collection {Ui, fi}, where {Ui} is a cover of X,

and fi ∈ K∗
X(Ui) satisfying fif

−1
j ∈ O∗

X(Ui ∩ Uj). Let f = {Ui, fi} ∈ H0(X,K∗
X/O∗

X) and Y an

irreducible hypersurface. We claim that ordY (f) is well-defined.

We may assume that Y ∩Ui∩Uj ̸= 0, otherwise there’s nothing to prove. Since f ∈ H0(X,K∗
X/OX∗),

there exists hij ∈ O∗
X(Ui ∩ Uj), we have

ordY (fi) = ordY (hij) + ordY (fj) = ordY (fj) .

Conversely, let D =
∑
ai[Yi] be a divisor. Choose an open cover {Uj} such that Yi ∩ Uj = Z(gij)

for some irreducible gij ∈ OX(Uj), which is unique up to units in OX(Uj), and define

fj =
∏
i

gaiij .

Then fj ∈ KX(Uj) and fj/fk ∈ O∗
X(Uj ∩ Uk) since gij/gkj ∈ O∗

X(Uj ∩ Uk).
3It is implicit on the definition that the order of f at Y does not depend on the chosen point. This is indeed the

case, but we shall skip the proof. See [Huy05, Prop. 1.1.35] for further details.
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Using the identification above, we have:

Corollary 6.5. There is an exact sequence:

0→ C∗ → K∗
X(X)

Φ−→ Div(X)→ Pic(X) .

In particular, to every divisor D, we have an associated line bundle O(D). The line bundle is trivial

if and only if D = (f) for some non-trivial meromorphic function f .

Proof. Take the long exact sequence of cohomology of the short exact sequence of sheaves:

0→ O∗
X → K∗

X → K∗
X/O∗

X → 0

In view of this exact sequence, we define

Definition 6.6. The divisor class group is

Cl(X) = Div(X)/{(f)
∣∣ f meromorphic}.

We would like to understand the image of the map O : Cl(X) ↪→ Pic(X). While this map is, in

general, not surjective, we have the following result:

Proposition 6.7. There is the following line bundle - divisor correspondence:

(i) Let 0 ̸= s ∈ H0(X,L) for a non-trivial line bundle. Then O
(
Z(s)

) ∼= L.

(ii) For any effective divisor D ∈ Div(X), there exists s ∈ H0
(
X,O(D)

)
such that Z(s) = D.

Proof.

(i) Let L ∈ Pic(X), and choose (Ui, φi) a trivialising cover. The divisor Z(s) associated to

0 ̸= s ∈ H0(X,L) is given by f := {φi(s|Ui)} ∈ H0(X,K∗
X/O∗

X). Then, the line bundle

associated to Z(s) corresponds to the cocycle {(Ui, fi)}, but

fi · f−1
j = φi(s|Ui∩Uj ) · (φj(s|Ui∩Uj ))

−1 = φi ◦ φ−1
j

(ii) Let D ∈ Div(X) be an effective divisor, represented by by {(Ui, fi ∈ K∗
X(Ui))}. Since D is

effective, the functions fi are holomorphic,fi ∈ O(Ui). Since the line bundle O(D) defined

via the the cocycle {(Ui ∩ Uj , ψij = fi · f−1
j )} ∈ H1(X,O∗

X), the local holomorphic functions

fi ∈ O(Ui) define a global section s ∈ H0(X,O(D)), and Z(s)|Ui = Z(fi) = D ∩ Ui, so

Z(s) = D, as claimed.

Finally, recall that, associated to a complex submanifold Y ⊆ X, one has the normal subbundle

NY |X , as the cokernel of the injection τY ↪→ τX . We would like to characterise the normal bundle

of hypersurfaces in view of the preceding discussion. We have

Proposition 6.8. Let Y ⊂ X be a (smooth) hypersurface. Then:

NY/X
∼= O(Y )|Y .
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Proof. It suffices to prove that the normal bundle NY |Pn has transition functions
∂φn

ij

∂zn
◦φj , and that

these are the same as those of O(d)|Y .

This gives a straight application in the case of CPn:

Theorem 6.9 (Adjunction Formula for Hypersurfaces). If Y ⊂ Pn is a smooth hypersurface of

degree d, then:

KY
∼= O(d− n− 1)|Y .

Proof. By taking determinants on the short exact sequence 0 → OY → OCPn → NY |CPn → 0, we

have KY = KPn |Y ⊗ det(NY |Pn). But NY |Pn = O(d)|Y , by assumption and KPn ∼= O(−n − 1) by

Corollary 5.21.Hence:

KY = O(−n− 1)|Y ⊗O(d)|Y = O(d− n− 1)|Y .

6.1 Blow-ups

We conclude this section by introducing a key construction in complex geometry: blow-ups. These

give rise to the active field within complex and algebraic geometry, known as birational geometry.

We will only discuss the fundamental construction and a few direct consequences.

For the entire section, X will be a connected complex manifold and Y ⊂ X a closed analytic set.

The blow-up of X along Y is a triple (BlY (X), E, σ), with X̂ = BlY (X) a complex manifold, E ⊆ X̂
a divisor called the exceptional divisor, and a proper holomorphic map σ : X̂ → X such that

(i) The map σ restricted to X̂ \ σ−1(Y ) is a biholomorphism to X \ Y , and

(ii) The map σ : σ−1(Y )→ Y is biholomorphic to P(NY |X)→ Y .

The blow-up map has a characterising universal property, which we will not prove.

Theorem 6.10 (Universal property of a blow-up). Let f : Z → X a bimeromorphic map such that

f restricted to Z \ f−1(Y ) is holomorphic. Then there exists a unique g : Z → X̂ such that the

diagram commutes:

If one believes the universal characterisation of a blow-up, it is clear that the blow-up is unique,

up to a unique biholomorphism. Thus, it suffices to show existence of a blow-up, to which we will

devote the rest of this section.

If one disregards the universal property, the construction of a blow-up outlined below can be taken

to be the definition of the blow-up of X along Y . We begin by considering the example of a point.

Recall that the total space of the line bundle π : O(−1) → CPn is the incidence variety inside

Cn+1 × CPn. Let us consider the other projection σ : O(−1) → Cn+1. For z ̸= 0 the pre-image

σ−1(z) is the unique line lz passing through z ∈ Cn+1. However, the preimage at zero is the entire

complex projective space,σ−1(0) = CPn, as any line in Cn+1 goes through the origin 0 ∈ Cn+1. In

fact, σ−1(0) is simply the zero section of the line bundleπ : O(−1)→ CPn.
We define the blow-up of 0 in Cn+1 as the total space of the line bundle

(
O(−1), π−1(0), σ

)
, the

total space of O(−1), where the zero section π−1(0) is the exceptional divisor E, together with the
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natural projection σ : O(−1) → Cn+1. Note that, σ is a biholomorphism away from the origin,

whilst the normal bundle of 0 is simply Cn+1, so σ|π−1(0) : P(Cn+1) = CPn → {0}, as needed.
For an arbitrary linear subspace Cm ⊆ Cn+1, consider

Blm(Cn+1) :=
{
(z, l) ∈ Cn+1 × CPn−m

∣∣ z ∈ ⟨Cm, l⟩} .

Clearly, Blm(Cn+1) → CPn−m is a Cm+1-fibre bundle, and using the same argument as in the

proof of Proposition 5.14, it is a holomorphic bundle, so the total space Blm(Cn+1) is a complex

manifold. The projection σ : Blm(Cn+1)→ Cn+1 gives the required blow up.

Let us construct the blow-up of a complex manifold along a submanifold Y m ⊂ Xn. Of course, the

idea is to use the previous construction as a local model and glue along different coordinate charts.

Proposition 6.11. Let Y be a complex submanifold of X. Then the blow-up of X along Y exists.

Proof. Take {Ui, φi} an atlas of X such that φi(Ui ∩ Y ) = φ(Ui) ∩ Cm ⊆ Cn, and consider

σ : BlCm(Cn) → Cn the blow-up of Cn along Cm as constructed above (note that we had n + 1

above, rather than n).

We denote by σi : Zi → φi(Ui) the restriction of the blow-up to the open subset φi(Ui) ⊂ Cn, i.e.
Zi = σ−1(φi(Ui)), and σi = σ|Zi . The goal is to prove that the ”local” blow-ups glue along different

charts.

[TO BE ADDED]

Proposition 6.12. The canonical bundle KX̂ of the blow-up (X̂, E, σ) is isomorphic to σ∗KX ⊗
OX̂((n− 1)E).

Proof. [TO BE ADDED]

Corollary 6.13. For E = CPn−1 ⊂ X̂ → X, one has O(E)|E ∼= O(−1).

Proof. By the previous proposition KX̂
∼= σ∗KX ⊗ O

(
(n − 1)E

)
, and by the adjunction formula

KCPn−1
∼= (KX̂ ⊗ O(E))|E . Hence,KCPn−1

∼= O(nE). Since KCPn−1
∼= O(= n) by Corollary 5.21

and Pic(CPn−1) ∼= Z is torsion free, the claim follows.

7 Hermitian metrics and connections

The idea now is to combine our previous discussion with the choice of metric on our bundles. First,

we go through some basic linear algebra results.

Definition 7.1. A hermitian inner product on a complex vector space E is a bilinear map ⟨ ·, · ⟩ :
E ⊗ E → C such that,

• h(a, b) = h(b, a) (Hermitian symmetry)

• h(a, a) ≥ 0 with equality iff a = 0 (positive definiteness)
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In particular, a Hermitian metric induces an anti-linear isomorphism E ∼= E
∗
. The following

lemmas are standard linear algebra:

Lemma 7.2. Let E be a complex vector space. The following objects are in one-to-one correspon-

dence:

(i) Hermitian inner products h,

(ii) (Real) inner products compatible with the complex structure J : g(·, ·) = g(J ·, J ·)

(iii) Non-degenerate positive real (1, 1)-forms, ω

Lemma 7.3. Let V be an n-dimensional complex vector space, and g a compatible inner product.

Consider ω = g(J ·, ·) the associated (1, 1) form, then

dvolg =
ωn

n
.

In particular, if W ⊆ V is a m-dimensional complex subspace, we have

volg(Y ) =
ωm

m!

In fact, this is a characterising property, due to Wirtinger:

Lemma 7.4 (Wirtinger inequality). Let W 2k ⊆
(
V 2n, g, J

)
be a subspace of a Euclidean complex

vector space. Denote byω the associated (1, 1)-form. Then

ωk

k!

∣∣∣∣∣
W

≤ volg

∣∣∣
W
,

with equality if and only if W is a complex subspace.

Proof. Let {e2i−1, e2i} be an orthonormal basis of W and {v2i−1, v2i} its dual basis. Denote by

iota :W ↪→ V the inclusion map. Then,

ι∗ω =

k∑
i=1

ω(e2i−1, e2i) v2i−1 ∧ v2i .

Thus,

ι∗
(
ωk

k!

)
=

k∏
i=1

ω(e2i−1, e2i)volg =
k∏
i=1

g(Je2i−1, e2i)volg ≤ volg ,

where the last inequality is simply the Cauchy-Schwarz inequality. The equality case implies

Je2i−1 = ±e2i, as needed.

On a Euclidean vector space, any form φ ∈
∧k V satisfying that φ|W ≤ volW for all k-planes

W ⊆ V is called a (pre)calibration.

Let us study the linear algebra associated to a hermitian vector space and its associated exterior

algebra. Let (V 2n, g, J
)
be a hermitian vector space. Recall that the space of linear maps that
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preserve the hermitian structure of V is a compact Lie group of dimension n2, called the unitary

group U(V ). The space V is naturally an irreducible U(V )-representation, called the standard

representation. The complexified VC = V ⊗ C splits as two complex irreducible representations:

V 1,0 ⊕ V 0,1 as discussed above.

We are interested in understanding how
∧k V ∗ splits into irreducible U(V )-representations. First,

we need the following concepts:

Definition 7.5. Let (V 2n, g) be a Euclidean vector space. We define the Hodge star operator

∗ :
∧k V ∗ →

∧2n−k V ∗ by the universal property

α ∧ ∗β = g(α, β) volg .

It is elementary to check that ∗ is an isometry in
∧• V ∗ satisfying ∗2 = (−1)k(2n−k) = (−1)k on∧k V ∗.

The Hodge star extends C-linearly to
∧• V ∗

C . With respect to the complex (p, q)-decomposition,

we then have ∗ :
∧p,q →

∧n−q,n−p.

Definition 7.6. Let (V 2n, g, J) be a Hermitian vector space, with fundamental form ω. We define

the Lefschetz operator by:

L :
∧(p,q)

V ∗
C
∧(p+1,q+1)

V ∗
C

α 7→ α ∧ ω .

and its adjoint Λ :
∧(p,q) V ∗

C →
∧(p−1,q−1) V ∗

χ .

Lemma 7.7. We have Λ = ∗L∗.

Proof. By definition

g(Λα, β) vol = g(α,Lβ) vol = L(β) ∧ ∗α = β ∧ ω ∧ ∗α = (−1)kg
(
β, ∗
[
L(∗α)

])
vol .

We will also need the counting operator H|∧k V ∗
C
= (k − n) Id. With this in hand, we have

Proposition 7.8. Let (V 2n, g, J) be a Hermitian vector space, with fundamental form ω. The

Lefschetz operator satisfies

[H,L] = 2L [H,Λ] = −2Λ [L,Λ] = H .

In particular, ⟨L,Λ, H⟩ induce an sl(2,C)-representation on
∧• V ∗

C ).

Proof. The statements [H,L] = 2L and [H,Λ] = −2Λ are immediate. Let us prove [L,Λ] = H by

induction over the dimension of V .

46



If we decompose V = W1 ⊕W2 complex subspaces, we have
∧• V ∗ =

∧•W ∗
1 ⊗

∧•W ∗
2 and ω =

ω1 ⊕ ω2, so L = ω1 ⊗ 1 + 1 ⊗ ω2 =: L1 + L2 . By linearity, it suffices to check the claim on split

forms. Let α = α1 ⊗ α2 and β = β1 ⊗ β2. Then,

g(α,Lβ) = g(α,L1β1 ⊗ β2) + g(α, β1 ⊗ L2β2)

= g(α1, L1β1)g(α2, β2) + g(α1, β1)g(α2, L2β2)

= g(Λ1α1, β1)g(α2, β2) + g(α1, β1)g(Λ2α2, β2) = g(Λα, β) .

So Λ = Λ1 + Λ2. Thus, by the induction hypothesis,

[L,Λ](α) = H1(α1)⊗ α2 + α1 ⊗H2(α2) = (k1 − n1)α1 ⊗ α2 + (k2 − n2)α1 ⊗ α2 = (k − n)α .

Thus, the base case n = 1 remains. Let {x, y} be a basis of V ∼= C with Jx = y, so∧•
V ∗ =

∧0
V ∗ ⊕

∧1
V ∗ ⊕

∧2
V ∗

R ⟨x, y⟩ ⟨ω⟩

Notice that L and Λ act trivially on
∧1 V ∗ by degree reasons. Finally, one checks that

[L,Λ](λ) = −Λ(λω) = −λ , [L,Λ](µω) = LΛ(µω) = µω

for λ, µ ∈ R.

Using induction, one gets

Corollary 7.9. Fori ≥ 1, we have [Li,Λ](α) = i(k − n+ i− 1)Li−1(α).

Definition 7.10. Let (V, g, J) be a Hermitian vector space and consider the associated operators

L,Λ and H. A k-form α ∈
∧k V ∗ is called primitiveif Λ(α) = 0. The subspace of primitive k-forms

is denoted P k.

Proposition 7.11 (Lefschetz decomposition). Let (V, g, J) be a Hermitian vector space and con-

sider the associated operators L,Λ and H. We have a direct sum decomposition∧k
V ∗ =

⊕
i≥0

Li(P k−2i) .

Finally, note that the complex structure J extends naturally to the space of k-forms: for α ∈ ΛkV ,

we define J(α)(v1, . . . , vk) := α
(
Jv1, . . . , Jvk). The relation between I, L and the Hodge star is

made precise by the following result, due to Weil:

Lemma 7.12. Let (V, g, J) be a Hermitian vector space. Consider the operators:

• ⋆ = (−1)(
k
2)+k ∗ J

• Θ = exp(L) exp(−Λ) exp(L).

Then ⋆ = Θ.
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Proof. We claim that the same dimensional induction argument used in the proof of Proposition

7.8 works in this setup. We leave it to the reader to verify the details.

Thus, it suffices to prove this for a complex one-dimensional space. As above, let {x, y} be a basis

of V ∼= C with Jx = y, so ∧•
V ∗ =

∧0
V ∗ ⊕

∧1
V ∗ ⊕

∧2
V ∗

R ⟨x, y⟩ ⟨ω⟩

For degree 0, we have ⋆1 = (−1)(
0
2) ∗ I(1) = ω, and

Θ(1) = exp(L) exp(−Λ) exp(L)(1) = exp(L) exp(−Λ)(1 + ω)

= exp(L)(1 + ω − Λω) = exp(L)(ω) = ω .

For degree 1, we have ⋆x = − ∗ I(x) = − ∗ y = x and ⋆y = − ∗ I(y) = ∗x = y, and by (bi)degree

reasons, Θ = Id. Finally, for degree 2, we have ⋆ω = −ω and

Θ(ω) = exp(L) exp(−Λ) exp(L)(ω) = exp(L) exp(−Λ)(ω)
= exp(L)(ω − 1) = −ω .

As a corollary of the equality ⋆ = Θ, we get the following useful identity, known as Weil’s formula:

Corollary 7.13 (Weil’s formula). For all α ∈ P k, we have

∗Lj(α) = (−1)(
k
2)

j!

(n− k − j)!
Ln−k−j

(
J(α)

)
,

Proof. Note that since Λ = − ∗ L∗, we have ∗ exp(L) = exp(Λ) and ∗ exp(Λ) = exp(L)∗. Thus, for
α ∈ P k, we have

exp(L) exp(−Λ) exp(L)α = (−1)(
k
2)+k ∗ I(α)

exp(Λ) exp(−L) ∗ exp(L)α = (−1)(
k
2)I(α)

∗ exp(L)α = (−1)(
k
2) exp(L) exp(−Λ)I(α)

=

Finally, we have

Definition 7.14. Let (V, g, J) be a Hermitian vector space. For k ≤ n, the Hodge—Riemann

pairing is defined as ∧k
V ∗
C ×

∧k
V ∗
C → C

(α, β) 7→ (−1)
k(k+1)

2 α ∧ β ∧ ωn−k

Proposition 7.15. Let α ∈ Λp,qV ∗
C and β ∈ Λp

′,q′V ∗
C .
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(i) The Hodge-Riemann pairing vanishes unless (p, q) = (q′, p′).

(ii) For 0 ̸= α ∈ P p,q ⊆ Λp,qV ∗
C , we have

ip−qQ(α, α) = [n− (p+ q)]! ⟨α, α⟩ > 0 .

We leave the proof as an exercise to the reader.

Of course, we are interested vector bundles rather than vector spaces:

Definition 7.16. A hermitian metric on a complex vector bundle E is a smooth section of (E⊗E)∗

such that it induced a hermitian structure on each fibre.

By using a partition of unity subordinate to a trivialisation of E, every complex vector bundle

admits a Hermitian metric, as in the Riemannian case. As usual, we have

Lemma 7.17. If (E, h) and (F, h′) are Hermitian vector bundles, then E ⊗ F , Hom(E,F ),
∧pE

inherit natural Hermitian metrics.

We denote the standard hermitian structure on C by ⟨ · , · ⟩.

Example 7.18. 1. For E =

k⊕
i=1

OX , we have h(s, t)(x) =

k∑
i=1

⟨si(x), ti(x)⟩.

2. For a line bundle L → X with empty base locus and a basis of global sections s1, . . . , sk, we

can define:

h(ζ, ξ)(x) =
⟨ψ(ζ), ψ(ξ)⟩∑
|ψ(si)|2

where ψ is a local trivialization.

We are working with complex vector bundles (which are additionally holomorphic), but not all

properties given by the choice of a hermitian metric extend to the complex category.

For instance, while it is true that given a short exact sequence of holomorphic vector bundles and a

hermitian metric on the middle term, the sequence naturally splits in the complex bundle category,

it does not split in the category of holomorphic bundles.

For instance, if one takes the O(−2)-twisted Euler sequence in CP1:

0→ O(−2)→ O(−1)⊕O(−1)→ O → 0 ,

then H0
(
CP1,O(−1)⊕2

)
= 0 ̸= C = H0

(
O ⊕O(−2)

)
.

Finally, all the computations and results on the Lefschetz operators and related discussion carry

over naturally to the case of complex vector bundles.

7.1 Hodge Theory

The choice of a compatible Riemannian metric on a complex manifold X induces hermitian metrics

on the bundles
∧k T ∗X and

∧p,q T ∗X, and so the spaces Ωk(M) and Ωp,q(M) are equipped with

the usual inner product and L2-norm .

As in the smooth case, one can ask:
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Question 7.19. Given a class [ψ] ∈ Hp,q

∂
(X), is there a representative with minimal L2-norm?

As expected, the answer to this question is given by the L2-adjoint of the corresponding operator:

Lemma 7.20. Let ∂
∗
be the L2-adjoint to ∂. Then ψ with ∂ψ = 0 has minimal L2-norm if and

only if ∂
∗
ψ = 0.

Proof. First, assume we have ψ ∈ Ap,qX with ∂ψ = 0 = ∂
∗
ψ. Then, for any other representative

ψ̃ = ψ + ∂Eη, we have

||ψ̃||2 = ||ψ||2 + ||∂η||2 + 2Re⟨ψ, ∂η⟩ = ||ψ||2 + ||∂η||2 + 2Re⟨∂∗ψ, η⟩ ≥ ||ψ||2 .

Conversely, assume ψ has minimal norm. In particular, for all η ∈ Ap,q−1
X , we have d

dt ||ψ+t∂η||
2 = 0.

Differentiating, we have Re⟨∂∗ψ, η⟩ = 0. By taking η′ = iη, it follows that ⟨∂∗ψ, η⟩ = 0. Since this

holds for arbitrary η, we have ∂∗ψ = 0 .

The reader might have noticed that, while the statement is technically true, it requires more care

than what has been put into the proof. Indeed, the L2-adjoint is only defined on the L2-completion

of Ap,qX . However, from Stokes’ theorem, one has

Lemma 7.21. For ψ ∈ Ap,qX , we have ∂
∗
ψ = −∗∂∗ψ ∈ Ap,q−1

X .

Proof. Let α ∈ Ap,q, β ∈ Ap,q−1. Then, we have

⟨α, ∂β⟩ =
∫
X
∂β ∧ ∗α =

∫
X
∂ (β ∧ ∗α) + (−1)p+q+1

∫
X
β ∧ ∂∗α = −⟨β, ∗∂∗α⟩

where we used that ∂ (β ∧ ∗α) = d (β ∧ ∗α) since β ∧ ∗α ∈ An,n−1
X .

Thus, we have a map ker ∂ ∩ ker ∂ → Hp,q(X). We define the ∂-Laplacian operator

∆∂ : Ap,q → Ap,q

γ 7→ (∂ ∂
∗
+ ∂

∗
∂)γ

and the space of ∂-harmonic forms, Hp,q
∂

:= ker∆∂ ; and similarly for ∂.

We have the following key result, due to Hodge:

Theorem 7.22 (Hodge decomposition). Let X be a compact hermitian manifold. Then there exists

a natural orthogonal decomposition

Ap,qX = ∂Ap,q−1
X ⊕Hp,q

∂
(X)⊕ ∂∗Ap,q+1

X .

The spaces of ∂-harmonic (p, q)- forms Hp,q are finite-dimensional.

Corollary 7.23. The map Hp,q
∂

(X)→ Hp,q

∂
is an isomorphism.

Proof. It suffices to prove that ker ∂ = ∂
(
Ap,q−1
X

)
⊕Hp,q

∂
(X).

Indeed, by the Hodge decomposition, if ∂ ∂
∗
β = 0, we have 0 = ⟨∂ ∂∗β, β⟩ = ||∂∗β||2, as needed.
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Analogously to the Poincaré duality, we have

Proposition 7.24 (Serre duality). For X compact, the pairing

Ap,q(X)×An−p,n−q(X)→ C

(α, β) 7→
∫
X
α ∧ β

induces a non-degenerate pairing

Hp,q(X)×Hn−p,n−q(X)→ C

7.2 Connections

We want to extend the previous discussion to the more general case of E-valued forms for a vector

bundle E. If E is a holomorphic bundle, we saw that there exists a natural operator ∂E that

extends the natural ∂ operator. But there is no (a priori) natural extension candidate for ∂.

To consider this extension as well as treat the more general case of complex vector bundles, we

need to introduce the concept of a connection:

Definition 7.25. Consider a vector bundle E → X and E its associated sheaf of sections. A

connection on E is a C-linear map of sheaves:

∇ : E → E ⊗A1
X ,

satisfying the Leibniz rule:

∇(fs) = df ⊗ s+ f∇s

for s ∈ E(U), f ∈ C∞(U).

Using the natural splitting A1
X
∼= A1,0

X ⊕A
1,0
X , we get a splitting ∇ = ∇1,0⊕∇0,1 for any connection.

Definition 7.26. Let (E, h) be a holomorphic vector bundle equipped with a hermitian metric h.

A connection ∇ is called

(i) compatible if ∇0,1 = ∂E ,

(ii) metric if ∇h = 0. That is, for any sections s1, s2 ∈ E , we have

d
(
h(s1, s2)

)
= h(∇s1, s2) + h(s1,∇s2) .

These definitions should be reminiscent of the fundamental theorem of Riemannian geometry, where

the Levi-Civita connection is characterised by being the unique torsion-free metric connection.

Indeed, one has

Proposition 7.27. Let (E, h) be a holomorphic vector bundle equipped with a hermitian metric h.

There exists a unique compatible metric connection on (E, h), called the Chern connection.
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Proof. Let h(si, sj) = hij with si a local frame. If ∇ exists, ω must be of type (1, 0) and

∂hij + ∂hij = d(hij) = h(∇si, sj) + h(si,∇sj)

= h(
∑

ωik ⊗ sk, sj) + h(si,
∑

ωjl ⊗ sl)

=
∑
k

ωikhkj +
∑
l

ωjlhil

In coordinate-free notation, we have ∂h = ωh and ∂h = hωT , and there is a unique solution:

ω = ∂hh−1.

Given a vector bundle E with a connection ∇ : E → E ⊗A1
X , we can extend it naturally to

∇ : AkX ⊗ E → Ak+1
X ⊗ E

ω ⊗ s 7→ dω ⊗ s+ (−1)kω ∧∇s .

Definition 7.28. The curvature of a connection ∇ is the operator:

∇2 = ∇ ◦∇ : E → A2
X ⊗ E

Our interest in the curvature operator is motivated by the following proposition:

Proposition 7.29. The curvature operator is function-linear. In particular, one can associate with

it an element F∇ ∈ A2
(
End(E)

)
such that

∇2s = F∇ · s .

The · represents the natural action of End(E) and will be omitted in the future.

Proof. Let f ∈ A0
X(U) and s ∈ E(U) for some open U . Then

∇2(fs) = ∇
(
df ⊗ s+ f∇s

)
=
(
d2f ⊗ s− df ⊗∇s

)
+
(
df ⊗∇s+ f∇2s

)
= f∇2s

)
.

Proposition 7.30. Let (E, h) be a holomorphic hermitian vector bundle and ∇ its Chern connec-

tion. Then F∇ ∈ A1,1
X

(
End(E)

)
.

We conclude by showing:

Lemma 7.31. Let (E, h) be a holomorphic vector bundle equipped with a hermitian metric, and ∇
a connection on E. Then,

(i) If ∇ is a compatible connection, F∇ ∈ A2,0
X ⊕A

1,1
X .

(ii) If ∇ is metric, for any sections s1, s2, we have

h
(
F∇(s1), s2

)
+ h
(
s1, F∇(s2)

)
= 0 .

(iii) The Chern connection satisfies F∇ ∈ A1,1
X .

Proof.
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(i) For any connection, the splitting ∇ = ∇1,0 +∇0,1 yields

∇2 =
(
∇1,0

)2
+
(
∇1,0∇0,1 +∇0,1∇1,0

)
+
(
∇0,1

)2
,

where
(
∇0,1

)2
is the only (0, 2) component. If ∇ is compatible ∇0,1 = ∂E , and the claim

follows since ∂
2
E = 0 (cf. Proposition 5.6).

(ii) If ∇ is metric, we have

0 = d2h(s1, s2) = d
(
h(∇s1, s2) + h(s1,∇s2)

)
=
[
h(F∇s1, s2)− h(∇s1,∇s2)

]
+
[
h(∇s1,∇s2) + h(s1, F∇s2)

]
= h(F∇s1, s2) + h(s1, F∇s2) .

(iii) Combining the two previous statements, the claim follows.

Finally, let us say a few more words about connections for completeness. A key propery of connec-

tions is the so-called Bianchi identity:

Proposition 7.32 (Bianchi identity). Let ∇ a connection on E. Then the curvature F∇ satisfies

∇EndF∇ = 0, where ∇End is the induced connection on the endomorphism bundle.

Since there is little risk of confusion, in the future we will be abusing notation and using ∇ to denote

the connection on E as well as the induced connection on its endomorphism bundle End(E).

Proof. Given the connection ∇ on E, the induced connection ∇End is given by ∇End(f)(s) =

∇
(
f(s)

)
− f

(
∇(s)

)
. Using that F∇ = ∇2, we have(

∇EndF∇
)
(s) = ∇

(
F∇(s))− F∇

(
∇(s)

)
= ∇

(
∇2(s))−∇2

(
∇(s)

)
= 0 .

7.3 The first Chern class

We conclude this section by revisiting the first Chern class of a line bundle and giving an alternative

interpretation of it.

For a line bundle L, we have End(L) = L⊗ L∗ = C, so the curvature F∇ can be identified with a

section of A2
X . Moreover, by the Bianchi identity, Proposition 7.32, we see that dF∇ = 0, so we

can consider its associated cohomology class [F∇]. We have the following theorem:

Theorem 7.33. Let L→ X be a line bundle and ∇ a connection on it. Then

[F∇] = 2πi c1(L)R

where c1(L) ∈ H2(X,Z) is the first Chern class of L defined by the connecting map in the exponential

long exact sequence, Equation (8), and c1(L)R = c1(L) ⊗ R. In particular, [F∇] is independent of

the chosen connection.
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Proof. We want to construct a Čech cocycle describing c1(L). Let {(Ui, ϕi)} a trivialising cover of

L with Uij = Ui ∩ Uj simply connected. Then [L] = [{ϕij}] ∈ H1(X,A1
X

∗
).

Thus, if we set ψij = log(ϕij), we have

cijk =
1

2πi

(
ψij + ψjk − ψik

)
defines a cocycle representing c1(L).

Recall the de Rham resolution C→ A0
X → A1

X → · · · is acyclic. Consider the induced short exact

sequences:

0→ Z→ A0
X → K1 → 0,

0→ K1 → A1
X → K2 → 0.

The boundary map gives:

H2
dR(X) =

H0(X,K2)

dH0(X,A1
X)

δ′−→ H1(X,K1)
α′
−→ H2(X,Z).

If ∇ is a connection on L with local connection forms ωi on Ui, we have:

ωi = gij · ωj · g−1
ij + dgij · g−1

ij ,

ωj − ωi = −g−1
ij dgij = −d log gij .

Thus, putting it all together, we have

δ1{ωi} = {ωj − ωi} = {−d log gij} = −2πi δ0
{

1

2πi
log gij

}
= −2πi c1(L) .

A first consequence of this theorem is that the image of cR1 : Pic(X) → H2(X,R) lies in the

H1,1-component.

This gives a necessary condition for a line bundle to be holomorphic. Let us prove that it is

sufficient.

Proposition 7.34. Let β ∈ H1,1(X) ⊆ H2(X,R) denote a complex line bundle L. Then L admits

a holomorphic structure.

Proof. Let ∇ be a connection on L. By Theorem 7.33, we know that
[

1
2πiF∇

]
= β ∈ H1,1(X,R).

Thus, there exists a closed real (1, 1)-form ζ such that [ζ] = α =
[

1
2πiF∇

]
.

Since
[
ζ − 1

2πiF∇
]
= 0, there exists α such that dα = ζ − 1

2πiF∇.Consider the modified connection

∇̃ = ∇+ 2πiα. Then F∇̃ = F∇ + 2πidα = ζ ∈ A1,1
X .

Thus ∇̃ is a compatible connection, and so L admits a holomorphic structure by Theorem 5.7.

Let us combine Theorem 7.33 with the line bundle–divisor correspondence. For that, we need to

recall the following Poincaré map.
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Let ι : Y → X be a smooth hypersurface. The Poincaré map ηY ∈ H2n−2
dR (X,R)∗ ∼= H2

dR(X,R) is
given by

ηY : H2n−2
dR (X,R)→ R

γ 7→ ⟨ι∗(γ), [Y ]⟩ .

This extends to a well-defined map

η : Div(X)→ H2
dR(X,R)∑

i

ai[Yi] 7→
∑
i

aiηYi ,

since X is compact. We have

Theorem 7.35. Let L = O(D) for some divisor D ∈ Div(X). Then c1(L) ∈ H2
dR(X) is the image

of D under the Poincaré map.

Proof. Since c1 is a linear map, we may assume D = [Y ] is an irreducible hypersurface. Choose h

a metric on L = O(Y ) and let ∇ be its Chern connection, with curvature F∇. The claim of the

theorem is equivalent to ∫
X
F∇ ∧ γ = −2πi

∫
Y
ι∗(γ) ,

for all γ ∈ Ω2n−2
closed(X).

[ADD LATER]

8 Kähler Manifolds

We now move on to discuss an important class of complex manifolds: Kähler manifolds.

The idea behind Kähler manifolds is to have a compatible metric with the (almost) complex struc-

ture, not just as a hermitian structure, but also satisfies some differential constraints, similar to

the vanishing of the Nijenhuis tensor we saw in Section 2.2. In fact, we have

Definition 8.1. Let (X, g, J) be an almost hermitian manifold, and let ∇ denote the Levi-Civita

connection of g. We say g is a Kähler metric if ∇J = 0. A manifold equipped with a Kähler metric

is called a Kähler manifold

The following proposition gives a more hands-on approach to Kähler metrics.

Proposition 8.2. An almost hermitian manifold (X, g, J) is Kähler if and only if

(i) its Nijenhuis tensor vanishes NJ = 0, and

(ii) the associated (1, 1) form ω is closed, dω = 0.

Sketch. First notice that ∇J = 0 is equivalent to∇ω = 0. Now, one can split ∇ω into its symmetric

and antisymmetric parts, ∇ω = (∇ω)s + (∇ω)as.
Since the Levi-Civita connection is torsion-free, (∇ω)as = dω. With some work, one can identify

(∇ω)s with the Nijenhuis tensor.
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We refer the interested reader to the seminal paper of Gray and Hervella [GH80] for a detailed proof,

as well as an extended discussion around the topic of Kähler metrics and their generalisations.

By the proposition above, the defining (1, 1)-forms ω is a symplectic form. Thus, one can view a

Kähler manifold as a complex manifold carrying a compatible symplectic structure.

Proposition 8.3. Let (X, g, J) be a hermitian manifold. Then g is a Kähler metric if and only if

the Levi-Civita and the Chern connections coincide.

Proof. The necessity is clear. Sufficiency is proved in detail in [Huy05, Prop. 4. A.7].

9 Positivity and vanishing

10 The Kodaira embedding theorem

11 Kodaira-Spencer deformation theory

12 The Tian-Todorov theorem
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