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This course aims to give an introduction to the world of complex geometry. The main idea I

would like to convey to the reader is the strong local-to-global properties that holomorphic

functions possess, and thus manifolds whose transition functions are holomorphic: complex

manifolds.

I have based these notes on the two excellent books, the first by Daniel Huybrechts [Huy05]

and the other by Jean-Pierre Demailly, [Dem12], who unfortunately passed away before the

book was ever published, and only online drafts are available.
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1 Holomorphic functions

We begin by reviewing some general properties of holomorphic functions and their extension

to arbitrary dimensions. We identify Cn ∼= R2n as real vector spaces. Recall

Definition 1.1. A function f : R2n → R2m is differentiable at 0 if its differential at z0 ∈ R2n

exists. Equivalently there exists a linear map Dfz0 such that

f(z) = f(z0)−Dfz0(z − z0) +O((z − z0)2).

Definition 1.2. Let f : Cn → Cm a function. We say f is holomorphic at z0 if it is

differentiable, and its differential Dfz0 is complex-linear, Dfz0 ∈ GL(n,C) ⊆ GL(2n,R).

The complex-linear condition translates to the equation

JDfz0 = Dfz0 J, (1)

where J is the standard complex structure matrix on R2n (complex multiplication by i in

Cn). Equation (1) is the famous Cauchy–Riemann equations in a coordinate-free form.

If we take standard coordinates z1 = x1 + iy1, . . . , znxn + iyn, and writing f as f = u + iv,

the Cauchy–Riemann(CR) equations read∂xiu = ∂yiv,

∂yiu = −∂xiv,
i = 1, . . . , n ,

which is perhaps a more standard presentation of the Cauchy–Riemann equations. We give

one final incarnation of the Cauchy–Riemann equations, but for that, we need the Wirtinger

operators:
∂

∂zi
:=

1

2

( ∂

∂xi
− i ∂

∂yi

)
,

∂

∂zi
:=

1

2

( ∂

∂xi
+ i

∂

∂yi

)
.

Lemma 1.3. The Wirtinger operators satisfy

(i)
∂

∂zi
f =

(
∂

∂zi
f

)
,

(ii)
∂

∂zi
(zi) = 1, and

∂

∂zi
(zi) = 0,

(iii) (Chain rule)

∂

∂zi
(f ◦ g) =

n∑
k=1

∂f

∂wk

∂gk
∂zi

+
∂f

∂wk

∂gk
∂zi

∂

∂zi
(f ◦ g) =

n∑
k=1

∂f

∂wk

∂gk
∂zi

+
∂f

∂wk

(
∂gk
∂zi

)
.

Moreover, the Cauchy–Riemann equations are equivalent to

∂f

∂zi
= 0 i = 1, . . . n ,
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Proof. Linear algebra exercise.

We can consider the complexified derivative

Df(z0)
C : Tz0R2n ⊗ C −→ Tf(z0)R2 ⊗ C.

The space Tz0R2n⊗C (resp. Tf(z0)Rn⊗C) admits the canonical coordinate base {∂/∂zi, ∂/∂zi}
(resp. {∂/∂w, ∂/∂w}). In this base, the Jacobian in block form takes the form

The a holomorphic map f , the matrix of derivatives has the form

Df =

(
∂f
∂zi

0

0 ∂f
∂zi

)
,

reflecting complex-linearity (no ∂/∂z̄-components) of f . It follows that for any holomorphic

function f , det
(
Df(z0)

C
)
is real and non-negative; det (Df(z0)) ≥ 0.

Definition 1.4. A holomorphic map f : U → V is called biholomorphic if there exists a

holomorphic inverse g to f .

If f is holomorphic and regular (non-degenerate Jacobian), then its Jacobian determinant

satisfies

detDf =

∣∣∣∣det( ∂f∂zi
)∣∣∣∣2 > 0.

In particular, det(Df) ̸= 0 is the local invertibility criterion. Indeed, we have the holomor-

phic version of the inverse function theorem:

Theorem 1.5 ( Holomorphic Inverse Function Theorem). Let U, V ⊆ Cn open and f : U →
V a holomorphic map. Consider z0 ∈ U such that det(Df(z0) ̸= 0. Then there exist open

subsets z0 ∈ U ′cU and f(z0) ∈ V ′CV such that f restricts to a biholomorphism.

More generally, a holomorphic map f : U → V is called a regular (submersion/immersion

as appropriate) when the complex-linear partials {∂f/∂zi}ni=1 are surjective (or injective) as

needed.

Theorem 1.6 (Holomorphic Implicit Function Theorem). Let U ⊆ Cn and V ⊆ Cm be open

sets with n > m and f : U → V a holomorphic function. Assume that there is z0 such that

Df(z0) satisfies

det

[(
∂fi
∂zj

)
i,j=1,...n

]
̸= 0 . (2)

Then there exists open sets U1 ⊆ Cn−m, U2 ⊆ Cm such that U1×U2 ⊆ U and a holomorphic

function g : U1 → U2 satisfying f(w, g(w)) = f(z0) for all w ∈ U1.
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Proof. The inverse function theorem guarantees the existence and differentiability of g. We

need to show that g is holomorphic. Indeed, by the chain rule of Lemma 1.3, we have

0 =
∂

∂wj

[
fi(w, g(w))

]
=

∂fi
∂wj

+
n∑
k=1

∂fi
∂zk

∂gk
∂wj

+
∂fi
∂zk

(
∂gk
∂wj

)
=

n∑
k=1

∂fi
∂zk

∂gk
∂wj

,

where the first and third terms in the middle line vanish since f is holomorphic.

But the condition in Equation (2) implies that
(
∂fi
∂zj

)
is invertible, so the only way the second

line can vanish is if ∂g
∂zj

= 0, as needed.

A straightforward corollary of the Holomorphic Implicit Function Theorem is the existence

of left (resp. right) holomorphic inverses. We have

Corollary 1.7. Let U ⊆ Cn and V ⊆ Cm be open sets and f : U → V a holomorphic

function. Assume we have z0 ∈ U such that Df(z0) has maximal rank. Then,

(i) If n > m, there exists open sets z0 ∈ U ′ ⊂ U and V ′ ⊆ V , and a biholomorphic map

g : V ′ → U ′ such that f ◦ g = Id in V ′.

(ii) If n < m, there exists open sets U ′ ⊂ U and f(z0) ∈ V ′ ⊆ V , and a biholomorphic

map g : V ′ → U ′ such that g ◦ f = (Idn, 0) in U
′.

1.1 Cauchy Integral Formula and power series expansion

Recall that a key result of complex analysis is the integral formula of Cauchy:

Theorem 1.8 (Cauchy Integral Formula). Let K ⊆ C be a compact subset with piecewise

C1 boundary C = ∂K, and f : K → C a differentiable function. Then for w ∈ K \ ∂K, we

have

2πif(w) =

∫
C

f(z, z)

z − w
dz +

∫
K

∂f

∂z

dz ∧ dz
z − w

(3)

Proof. Without loss of generality, we assume w = 0. We want to study the function

f(z, z)/z ∈ L1(K). Taking δ > 0, we have on one side,∫
K\Bδ(0)

d

(
f(z, z)

z

)
dz = −

∫
K\Bδ(0)

∂f

∂z

dz ∧ dz
z

.

On the other side, by Stokes’ theorem, we get∫
K\Bδ(0)

d

(
f(z, z)

z

)
dz =

∫
C

f(z, z)

z
dz −

∫
∂Bδ

f(z, z)

z
dz .

Parametrising the last term in polar coordinates z = δeiθ, we have∫
∂Bδ

f(z, z)

z
=

∫ 2π

0

f(δ, θ)idθ .

Putting everything together and taking δ to zero, the claim follows by continuity of f .
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Of course, we are mostly interested in the case where f is holomorphic, so the last term in

(3) vanishes, and we have the usual expression

f(w) =
1

2πi

∫
C

f(z)

z − w
dz (4)

The Cauchy Integral Formula (CIF) generalises to higher dimensions by considering polydiscs

DR(w) = BR1(w1)× . . . BRn(wn) and iterative use of Fubini’s theorem.

Exercise 1.9. Prove the n-dimensional Cauchy Integral Formula in detail:

f(w) =
1

(2πi)n

∫
∂DR(w)

f(z1, . . . , zn)

(z1 − w1) . . . (zn − wn)
dz1 . . . dzn .

The CIF has some important, remarkable consequences for the regularity of the function f :

Proposition 1.10. Let f : U → C be a holomorphic function. Then f is analytic. That is,

it admits a convergent power series expansion

2πif(z) =
∑
|α|≥0

f (α)(z0)

α!
zα ,

with α a multi-index α = (α1, . . . , αn), .

Proof. We argue the case n = 1; the higher-dimensional case follows. We know
1

z − w
=

1

z

1

(1− w/z)
=
∑
k≥0

wk

zk+1
for |w| < |z|. Substituting in the CIF and using Lebesgue monotone

convergence, we have

2πif(w) =

∫
C

f(z)

z − w
dz =

∫
C

∑
k≥0

wk
f(z)

zk+1
dz =

∑
k≥0

wk
∫
C

f(z)

zk+1
dz .

Analyticity follows. The coefficients of the power expansion are the successive derivatives of

f by the uniqueness of Taylor expansions. Alternatively, one can check directly:

f ′(w) = lim
h→0

f(w + h)− f(w)
h

= lim
h→0

1

2πih

∫
C

f(z)

z − (w + h)
− f(z)

z − w
dz

= lim
h→0

1

2πih

∫
C

hf(z)

(z − w − h)(z − w)
dz =

1

2πi

∫
C

f(z)

(z − w)2
dz .

The analyticity of holomorphic functions has some remarkable consequences:

Theorem 1.11 (Open mapping theorem). Let f : U → C be a non-constant holomorphic

function on an open set U . The f is an open mapping.

In particular, if there exists z0 ∈ U such that |f(z)| ≤ |f(z0)| for all z ∈ U , f is constant.
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Theorem 1.12 (Identity principle). Let U be an open connected subset of Cn and f, g : U →
C holomorphic functions. If f = g on an open subset V ⊂ U , then f ≡ g on all of U .

Proof. Let

W =

{
z ∈ U

∣∣∣ ∂αf
∂zα

=
∂αg

∂zα
∀ α multi-index

}
.

The set W is clearly closed and non-empty. By analyticity, W is also open, and by connect-

edness, W = U .

Another consequence of the Cauchy Integral Formula, Equation (4), is

Lemma 1.13 (Cauchy inequality). Let f : U → C be a holomorphic function and take

R > 0 such that the ball BR(z0) is contained in U . Then

|f (α)(z0)| ≤
α!

Rα
sup

∂BR(z0)

|f(z)| (5)

There are two important corollaries of this inequality:

Theorem 1.14 (Generalised Liouville theorem). Let f : Cn → C a holomorphic function

such that |f(z)| ≤ C(1 + |z|)D for some C,D ≥ 0. Then f is a polynomial with degree at

most D.

Theorem 1.15 (Montel’s theorem). Let U ⊆ Cn open, and consider O(U) the space of

holomorphic functions on U , equipped with the uniform convergence on compact sets topology,

induced by C0(U). Then every locally uniformly bounded sequence (fj)j ⊆ O(U) has a

convergent subsequence.

Proof. By Arzelà–Ascoli.

1.2 Hartogs’ phenomenon and Weierstrass Preparation theorem

So far, all properties that we have discussed are direct analogues of properties that occur in

complex analysis (n = 1) and have discussed the rigidity of holomorphic functions. First,

we need the following technical lemma

Lemma 1.16. Consider the open cylinder U × V with U ⊆ Cn open, and V ⊆ C a neigh-

bourhood of ∂Bε(z0) and let f : V × U → C a holomorphic function. Then

g(z1, . . . , zn) :=

∫
∂Bε(z0)

f(ξ, z1, . . . zn)dξ

is a holomorphic function on U .
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Proof. Notice that if f were holomorphic on U ×Bε(z0), we would essentially be done. The

idea is to reduce it to an equivalent situation.

Since ∂Bε(z0) is compact, for every δ > 0, there exists finitely many ξi such that {Bδ(ξi)}
cover ∂Bε(z0). By choosing δ small enough, we can ensure Bδ(ξi) ⊆ V and f has a convergent

power series in Bδ(ξi)× Ui for all i.
We can now split the integral into a finite sum of integrals where f has a power series

expansion.

Let us now focus on the extension problem.

Theorem 1.17 (Hartogs’ principle). Let DR(0) and DR′(0) be two polydiscs in Cn with

DR′(0) ⊆ DR(0) so Ri > R′
i for all i. Any holomorphic function f : DR(0) \ DR′(0) → C

can be uniquely extended to a holomorphic function f : DR(0)→ C.

Proof. Let w = (z2, . . . , zn) with |z2| > R′
2. We can use the Cauchy formula for the function

z 7→ f(z, w), for R′
1 < δ < R1:

f(z, w) =
1

2πi

∫
|ξ|=δ

f(ξ, w)

(ξ − z)
dξ

The integrand is (ξ, z, w) 7→ f(ξ,w)
(ξ−z) dξ, which is holomorphic on Bc(δ)×Bδ−c(0)×DR2,..., Rn(0)

for some small c. Therefore, by the lemma, the function

f̃(z, w) =
1

2πi

∫
|ξ|=δ

f(ξ, w)

(ξ − z)
dξ

is holomorphic on Bδ−c(0)×DR2,...,Rn , providing the desired extension by the identity prin-

ciple.

We conclude this subsection by proving two technical lemmas, due to Weierstrass, that will

be useful throughout the course.

Definition 1.18 (Weierstrass Polynomial). A Weierstrass polynomial in z1 of degree d is a

polynomial

zd1 + a1(z
′)zd−1

1 + · · ·+ ad(z
′),

where ai(z
′) are holomorphic functions in z′ = (z2, . . . , zn) defined in a neighbourhood of the

origin and such that ai(0, . . . , 0) = 0.

Theorem 1.19 (Weierstrass Preparation Theorem). Let f : Dε(0)→ C with f(0, 0) = 0 and

f(z1, 0, . . . , 0) ̸≡ 0. Then for some smaller ball Dε′(0) there exists a unique decomposition:

f = g · h

where g is a Weierstrass polynomial in z1, and h : Dε′(0) → C is a holomorphic function

without zeroes.
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Proof. By taking ε smaller if needed, we may assume f(z1, 0, . . . , 0) vanishes only at 0, with

multiplicity d.

For small w, the zeros of fw(z) = f(z, w) are given by a1(w), . . . , ad(w). Define:

g(z, w) =
d∏
i=1

(z1 − ai(w)), h =
f

g

We need to show that g and h are holomorphic in z1 and w. Holomorphicity in z1 is

straightforward.

To see g is holomorphic in w, notice that this amounts to showing that the elementary

symmetric polynomials in terms of ai(w) are holomorphic, which are linear combinations of

Sk =
∑n

i=1 ai(w)
k for k = 0, . . . , d. By the Cauchy residue formula, we have

n∑
i=1

ai(w)
k =

1

2πi

∫
|ξ|=ε1

ξk

f(ξ, w)

∂

∂ξ
f(ξ, w)dξ ,

which is holomorphic by Lemma 1.16. Finally, we may write

h(z1, w) =
1

2πi

∫
|ξ|=ε′1

h(ξ, w)

ξ − z1
dξ,

which is everywhere holomorphic by Lemma 1.16 and f/g being holomorphic on the annulus.

1.3 The ring of holomorphic germs OCn,0

We study the local behaviour of holomorphic functions on an arbitrarily small neighbourhood

of a point. More formally, this leads to considering the notion of germs and stalks:

Definition 1.20. The holomorphic stalk at the origin, denoted OCn,0, is the set of all equiv-

alence classes of pairs (U, f), where U is an open neighbourhood of 0 in Cn and f : U → C
is a holomorphic function.

Two pairs (U, f) and (V, g) are considered equivalent if there exists an open neighbourhood

W ⊆ U ∩ V of 0 such that f and g agree on W :

(U, f) ∼ (V, g) ⇐⇒ f |W = g|W for some open W ∋ 0.

An equivalence class is called a holomorphic germ at 0.

Alternatively, one can think of the holomorphic stalk as the set of convergent power series

inside C[[z1, ..., zn]].

Exercise 1.21. Prove that this is indeed the case, i.e. there is a one-to-one correspondence

between convergent power series and holomorphic germs.
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Remark 1.22. Definition 1.20 might feel overly complicated and slightly unnatural. Indeed,

stalks and germs are better understood in the language of sheaves, which we will introduce

in Section 3.

The holomorphic stalk OCn,0 inherits a ring structure from that of holomorphic functions.

We devote ourselves to studying its structure. We shall prove

Theorem 1.23. The stalk of holomorphic germs OCn,0 is

(i) a local integral domain,

(ii) a unique factorisation domain (UFD), and

(iii) Noetherian.

It is clear that OCn,0 is a local integral domain with the maximal ideal I0 given by (germs

of) functions vanishing at the origin, and residue field OCn,0/I0 ∼= C.

Proof of Theorem 1.23 (ii).

We prove this by induction. The case n = 0 is trivial.

Let f ∈ OCn,0 vanishing at the origin. By the Weierstrass preparation theorem, we can

uniquely write f as f = u · p, with u ∈ O×
Cn,0 a unit and p ∈ OCn−1,0[w] (the germ of) a

Weierstrass polynomial.

The OCn−1,0 is a UFD by induction hypothesis, and so is OCn−1,0[w] by Gauss’ lemma.

It remains to check that p is a finite irreducible element of OCn,0, which is straightforward

using the uniqueness of the decomposition of the Weierstrass Preparation Theorem

Let us now prove that the O×
Cn,0 is Noetherian, that is, every ideal is finitely generated. First,

we need another technical lemma of Weierstrass:

Theorem 1.24 (Weierstrass Division Theorem). Let f ∈ OCn,0, and let g be a Weierstrass

polynomial of degree d. Then there exist a unique h ∈ OCn,0 and r ∈ OCn−1,0[z1] with

deg r < d such that:

f = g · h+ r

Proof. Define

h(z, w) =
1

2πi

∫
∂Bε(0)

f(ξ, w)

g(ξ, w)

dξ

ξ − z

and check that r = f − gh lies in OCn−1,0[z1] and is of degree < d holomorphicity.

Proof of Theorem 1.23 (iii). Again, we prove this by induction, with the case n = 0 being

immediate.

Assume OCn−1,0 is Noetherian, and therefore so is the subring OCn−1,0[z1] ⊆ OCn,0, by

Hilbert’s basis theorem.
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Let I ∈ OCn,0 an ideal, so I ∩ OCn−1,0[z1] is finitely generated.

Take f ∈ I.By the Weierstrass Preparation Theorem, we get f = gh with h ∈ O∗
Cn,0 and

g ∈ OCn−1,0[z1], so g = fh−1 ∈ I ∩ OCn−1,0[z1].

For any other f̃ ∈ I, the Weierstrass division theorem implies that f̃ = gh̃ + r̃ for r ∈
OCn−1,0[z1]. Since f̃ and g are in I, it follows that r ∈ I ∩ OCn−1,0[z1]. Thus, I is a finitely

generated ideal.

1.4 Hilbert’s Nullstellensatz

In the previous section, we studied holomorphic functions and their germs. The goal of this

section is to relate them to a more geometric notion, namely analytic sets and their germs.

Given f : U → C a holomorphic function, we denote its vanishing set as Z(f) = {z ∈
U
∣∣ f(z) = 0}.

Definition 1.25. An analytic set Z ⊆ X is a set such that for each x ∈ Z, there exists

an open neighbourhood U ∋ x and holomorphic functions f1, . . . , fk ∈ O(U) with Z ∩ U =

Z(f1, . . . , fk) =
k⋂
i=1

Z(fi).

In the same spirit as before, we define the corresponding germs

Definition 1.26. An analytic germ at x ∈ X is an equivalence class of analytic sets under

the relation Z1 ∼ Z2 if Z1 ∩ U = Z2 ∩ U for some neighbourhood U ∋ x.

Given a germ X at the origin, we denote by I(X) the set of homomorphic germs s satisfying

the condition X ⊆ Z(s). So Z(·) takes holomorphic germs (or functions) to analytic germs,

and I(·) takes analytic germs to their holomorphic counterparts. They satisfy the following

relations:

Lemma 1.27.

(i) For any subset A ⊆ OX,x, Z(A) is a well-defined analytic germ with Z(A) = Z((A)OX,x
).

(ii) For every analytic germ Z, I(Z) = {f ∈ OX,x | Z ⊂ Z(f)} is an ideal.

(iii) If X1 ⊂ X2 are analytic germ, then I(X2) ⊂ I(X1). If I1 ⊂ I2 are ideals in OX,x, then
Z(I2) ⊂ Z(I1).

(iv) Z = Z(I(Z)) and I ⊂ I(Z(I)).

(v) Z(I · J) = Z(I) ∪ Z(J) and Z(I + J) = Z(I) ∩ Z(J).

Proof. Exercise.
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The relation between holomorphic and analytic germs is made precise by Hilbert’s Nullstel-

lensatz:

Theorem 1.28 (Hilbert’s Nullstellensatz Theorem). For any ideal I ⊆ OX,x, we have:

√
I = I

(
Z(I)

)
where

√
I is the radical ideal of I;

√
I = {f ∈ OX,x | fn ∈ I for some n}.

We would like to understand the fundamental “building blocks” of holomorphic and analytic

germs. Since the holomorphic stalk naturally carries a ring structure, our focus will be on

its prime ideals. On the side of analytic germs, we introduce the following definition:

Definition 1.29. An analytic germ is Z called irreducible if for any union Z = Z1∪Z2 with

Zi analytic germs, either Z = Z1 or Z = Z2.

As expected, we have the following result

Lemma 1.30. An analytic germ Z is irreducible if and only if I(Z) is a prime ideal.

Proof. Let f1f2 ∈ I. Then Z =
(
Z ∩Z(f1)

)
∪
(
Z ∩Z(f2)

)
. If Z is irreducible Z = Z ∩Z(fi),

so fi vanishes along Z, i.e. fi ∈ I(Z).
The converse follows similarly.

2 Complex and almost complex manifolds

We now introduce the main class of objects that we are interested in, complex manifolds. We

will give two definitions for them. First, using complex charts and holomorphic transition

functions. Second, we adopt a more differential geometric style, using GL(n,C)-structures,
more commonly known as almost complex structures on a real manifold. The two definitions

are equivalent by virtue of the celebrated Newlander-Nirenberg Theorem.

For the remainder of the notes, a (topological) manifold is a locally Euclidean, paracompact,

second-countable, Hausdorff space. Recall from differential geometry:

Definition 2.1. A Ck-manifold is a manifold equipped with an atlas of charts (Ui, ϕi)i∈I ,

where transition functions ϕij = ϕi ◦ ϕ−1
j are Ck-diffeomorphisms between open sets in Rn.

Recall that C0-manifolds are topological manifolds, and that a theorem of Whitney tells us

that a Ck-manifold for k ≥ 1 admits a compatible C∞-structure.

Understanding when a manifold admits a smooth structure, and if so, how many, was an

active research area in the second half of the 20th century that is nowadays well understood

(see e.g. Kervaire–Milnor groups, Kirby–Siebenmann invariants, geometrisation conjecture)

except in dimension 4, where surprising links to other areas of mathematics appear.

12



Another class (before I digress too much) is the class of affine manifolds, where the Ck

condition is replaced by Aff(Rn), requiring the transition maps to be affine maps of Rn.

Affine manifolds are quite mysterious, and longstanding conjectures and open problems

remain to be tackled.

Definition 2.2. A complex manifold is a manifold equipped with an atlas of charts (Ui, ϕi)i∈I ,

where transition functions ϕij = ϕi ◦ ϕ−1
j are biholomorphisms between open sets in Cn.

To avoid issues and pathologies, we will always assume our atlases are maximal, i.e. they

are not a proper subset of any other atlas. Every atlas {(Ui, ϕi) : i ∈ I} is contained in a

unique maximal atlas: the set of all charts (U, ϕ) compatible with (Ui, ϕi) for all i ∈ I, so
there is no prejudice in always taking the maximal atlas.

We will mostly refer to X as the complex manifold, omitting the atlas to lighten notation, as

is typically done in differential geometry. As in the previous case, we can ask the questions:

Question 2.3. When does a manifold M admit the structure of a complex manifold? Is the

complex structure unique? Can we classify complex manifolds up to biholomorphism?

In contrast to the smooth case, very little is known in this case, beyond some obvious

topological constraints, discussed in the exercises.

In the compact setting, some existence and classification results exist for complex dimensions

1 and 2. Already in dimension 3, we find one of the most (in)famous open problems in

differential geometry:

Question 2.4. Does the round 6-sphere S6 admit the structure of a complex structure?

In the non-compact case, we have Liouville-type obstructions, so we know that the complex

plane Cn is not biholomorphic to certain bounded domains (e.g. the unit ball or polydisc).

However, there is no high-dimensional analogue of the Uniformisation Theorem. In general,

complex domains carry intrinsic complex-analytic invariants that obstruct biholomorphism.

For n > 1, many bounded domains are not biholomorphically equivalent.

Definition 2.5. Let X be a complex manifold, and f : X → C a function. We call f

holomorphic if, for all charts (U, ϕ) in the (maximal) atlas, f ◦ ϕ is a holomorphic function

in the sense of Section 1.

Definition 2.6. Let X, Y be complex manifolds and f : X → Y a continuous function. The

map f is said to be holomorphic if for all charts (U, ϕ) of X and (V, ψ) of Y , the map

ψ−1 ◦ f ◦ ϕ

is a holomorphic map in the sense of Section 1.
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Definition 2.7. Let X be a complex manifold of dimension n, and Y ⊆ X.

We say Y is an (embedded) complex submanifold of X of dimension k if for each y ∈ Y

there exist an open neighbourhood U of y and local holomorphic coordinates (z1, . . . , zn) on

U such that Y = Z(zk+1, . . . , zn).

We will usually require Y to be closed in X. With the definition above, it is easy to see that

Proposition 2.8. A complex submanifold is a complex manifold such that the inclusion map

ιY : Y ↪→ X is injective and holomorphic.

Conversely, a holomorphic map f : Y → X is called an embedding if it is injective, locally

closed, and with injective differential Df : TyY → Tf(y)X for all y ∈ Y . It follows easily that

f is an embedding if and only if f(Y ) is a complex submanifold of X, biholomorphic to Y .

As in the smooth case, we can produce examples of complex submanifolds via the holomor-

phic implicit function theorem:

Theorem 2.9. Let f : X → Y be a holomorphic map between complex manifolds of dimen-

sions n and m respectively, and let y ∈ Y such that the differential Dfx : TxX → TyY is

surjective for all x ∈ f−1(y).

Then f−1(y) is a complex submanifold of dimension n−m.

A point y satisfying the conditions of the theorem above is called a regular point (or value,

if Y = C). We have

Corollary 2.10. Let f : Cn → C be a holomorphic function and c a regular value, then

Z(f − c) = f−1(c) is a complex hypersurface (complex submanifold) of complex codimension

1.

Unfortunately, one needs to work a bit harder if one is interested in finding examples of

compact complex submanifolds.

Exercise 2.11. The only compact complex submanifolds of Cn (when considered as subman-

ifolds of Cn) are discrete points.

Let us introduce the first compact example, which will play a prominent role throughout the

course. The complex projective space CPn is the moduli space of complex lines (or dually

hyperplanes) in Cn+1. It can be realised as the quotient

CPn ∼= (Cn+1 \ {0})/C∗ ,

where the C∗-action is given by z 7→ λz.

The complex projective space CPn is a compact n-dimensional complex manifold.

14



Let us define homogeneous coordinates [z0, . . . , zn] on CPn. For i = 0, . . . , n, define a chart

(Ui, ϕi) on CPn by Ui = Cn and ϕi : Cn → CPn given by

ϕi : (w1, . . . , wn) 7−→ [w1, . . . , wi, 1, wi+1, . . . , wn].

This is a homeomorphism with the open subset

ϕi(Ui) = {[z0, . . . , zn] ∈ CPn : zi ̸= 0} in CPn.

For 0 ≤ i < j ≤ n, the transition function ϕij = ϕ−1
j ◦ ϕi is given by

ϕij : Cn \ {zj = 0} → Cn \ {zi = 0}

(z1, . . . , zn) 7−→ (
z1
zj
, . . . ,

zi
zj
,
1

zj
,
zi+1

zj
, . . . ,

zj−1

zj
,
zj+1

zj
, . . . ,

zn
zj
) .

The ϕij’s are clearly biholomorphisms. So {(Ui, ϕi)}i=0,...,n+1 forms an atlas of CPn, that
extends to the corresponding maximal atlas.

Now, we have the following example of complex submanifolds:

Proposition 2.12. Let p : Cn+1 \ {0} → C a homogeneous polynomial such that 0 is a

regular value of p, and consider

X = {[z0, . . . , zn] ∈ CPn
∣∣ (z0, . . . , zn) ∈ Z(p)} .

Then X is a well-defined compact complex submanifold of CPn.

Proof. X is well-defined, since p is homogeneous, so p(z) = 0 implies p(λz) = 0 for all

λ ∈ C∗.

Now, X is covered by the charts Vi = (X ∩ Ui), where Ui are the standard charts for CPn

used above. On each Vi, X is described by the vanishing of p(z0, . . . , zi−1, 1, zi+1, . . . zn), and

Theorem 2.9 concludes the proof.

We give two examples:

Example 2.13. For d ∈ N+, the set X = (zd0 + zd1 + zd2) ⊆ CP2 is a Riemann surface of

genus g = (d−1)(d−2)
2

.

Example 2.14. The set Y = Z(z20 + · · · + z23) ⊆ CP3 is a projective complex manifold

biholomorphic, CP1 × CP1.

Of course, one may ask how general the condition for 0 to be a regular value of a homogeneous

polynomial. We leave it as an exercise to show that

Exercise 2.15. The set of homogeneous polynomials for which 0 is a regular value is generic.

More generally, one has
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Proposition 2.16. Let (p1, . . . pk) : Cn+1 \{0} → Ck a collection of homogeneous polynomi-

als such that (0, . . . , 0) is a regular value. Then
(
Z(p1)∩· · ·∩Z(pn)

)
/C∗ ⊆ CPn is a complex

submanifold of dimension n− k, called a complete intersection.

More generally, a projective variety is a subset X of CPn which is locally defined by the

vanishing of finitely many homogeneous polynomials.

Projective complex manifolds allow us to consider a large number of examples of complex

manifolds. Moreover, since they are defined using polynomials, they can be studied using

algebraic techniques, giving rise to complex algebraic geometry.

In the opposite direction, one may consider under what conditions one can guarantee that a

compact complex manifold X can be realised as a projective complex manifold. The answer

to this question is fully understood and follows from two important results, Chow’s Theorem

and the Kodaira Embedding Theorem, which we will prove during this course.

Complex Lie groups also provide important examples of complex manifolds:

Definition 2.17. A complex Lie group is a group G that is also a complex manifold such

that multiplication and inversion are holomorphic maps.

Examples include the general linear groups GLn(C), special linear groups SLn(C), complex

tori, etc.

Proposition 2.18. Let G be a complex Lie group acting holomorphically on a complex

manifold X. If the action is free and proper, then the quotient X/G carries a canonical

complex manifold structure for which the projection X → X/G is a holomorphic submersion.

Proof.

As a direct application of this proposition, we give two further examples of complex mani-

folds: Hopf and Iwasawa manifolds.

Hopf manifolds are examples of compact complex manifolds obtained as quotients of Cn\{0}
by a discrete group generated by contractions. For a concrete example, let α ∈ (0, 1) and

HA = (Cn \ {0})/ ∼α

where z ∼α w if z = αnw for some n.

Remark 2.19. Hopf manifolds are diffeomorphic to S2n−1 × S1 (think in polar coordinates)

and provide important examples in complex geometry, as we shall see.

Finally consider U ⊆ GL(3,C) the subgroup of upper-triangular matrices

U =

1 z1 z2
0 1 z3
0 0 1


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and its subgroup UZ = U ∩ GL(3,Z[i]). The group UZ acts by translations (w1, w2, w3) ·
(z1, z2, z3) 7→ (z1 +w1, z2 +w2, z3 +w3), which is a free and proper action, so the quotient is

a complex manifold, known as the Iwasawa manifold I = U/UZ.

The first and third coordinate provide a holomorphic submersion f : I → C/Z[i] × C/Z[i],
with the fibres given by the remaining coordinate, biholomorphic to C/Z[i].

2.1 Almost complex structures

We now introduce the second definition of complex manifolds, via almost complex structures.

The idea is to consider a weaker notion of complex structures and study the relation between

the two.

The idea is the following: Let X be a complex n-manifold in the sense of Definition 2.2.

Then, the underlying topological manifold carries a natural smooth real 2n-manifold XR. Its

tangent bundle TXR inherits the structure of a complex vector bundle, which is reflected in

the existence of a bundle endomorphism J ∈ C∞(End(TXR) such that J2 = − Id2n fiberwise.

This motivates the notion of an almost complex structure:

Definition 2.20. Let X be a real 2n-manifold. An almost complex structure J on X is the

choice of a section J in C∞(End(TXR)) satisfying the condition J2 = − Id2n.

A manifold X equipped with an almost complex structure J is called an almost complex

manifold.

Any complex manifold in the sense of Definition 2.2 induces a real manifold X with an

almost complex structure J . The converse is not true, as we shall see.

Since an almost complex structure J furnishes the tangent space with the structure of a

complex vector space pointwise, we can define the analogue notions of holomorphic functions

and maps.

Definition 2.21. Let (X, J) be an almost complex manifold and f : X → C a smooth

function. We say f is J-holomorphic function if

df ◦ J = idf .

Similarly, we have

Definition 2.22. Let (X, I) and (Y, J) be almost complex manifolds and f : X → Y a

smooth map. We say f is a pseudo-holomorphic map if

df ◦ I = J ◦ df .

Before proceeding, let us say a few words about the existence of almost complex structures.

Unlike the case of complex strucutres, we are not requiring that our structure solves any

PDEs (the transition maps being holomorphic), just the existence of a special section of
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the endomorphism bundle End(TM) (or the reduction of the frame bundle to a principal

GL(n,C)-bundle). This problem is well-understood from the point of view of classifying

spaces, and it allows us to phrase necessary and sufficient conditions for the existence of an

almost complex structure in terms of very explicit topological conditions in low dimensions:

Proposition 2.23. Let M2n be a closed manifold

(i) For n = 1, M admits an almost complex structure if and only if M is orientable (equiv.

w1(M) = 0).

(ii) For n = 2, M admits an almost complex structure if and only if M is orientable and

there exists h ∈ H2(M,Z) such that

h2 = 3σ(X) + 2χ(X) h ≡2 w2(X) .

We refer the interested reader to [MS74, §12] for an introductory discussion on obstruction

theory on vector bundles.

2.2 The exterior differential and the Nijenhuis tensor

Let us now explore the geometry of almost complex manifolds. For the remainder of the

section (Xn, J) will denote an almost complex manifold of (complex) dimension n.

Lemma 2.24. The vector bundle TX⊗RC splits as a direct sum of complex bundles TX1,0⊕
TX0,1 of complex dimension n, given by

TX1,0 = ker (i Id−J) TX0,1 = ker (i Id+J)

Proof. The minimal polynomial of J is x2−1 = (x−i)(x+i), which means J is diagonalisable

over C. The bundles TX1,0 and TX0,1 are the corresponding eigenbundles

Remark 2.25. While TX1,0 and TX0,1 are not in general isomorphic as complex bundles,

they are always isomorphic as real bundles, with the isomorphism given by conjugation.

The decomposition of the complexified tangent bundle into holomorphic and anti-holomorphic

parts trickles down into all associated vector bundles. In particular, we have the following

decomposition of exterior k-forms:

ΛkT ∗M ⊗ C =
⊕
p+q=k

Λp,qT ∗M Λp,qT ∗M := Λp
(
T ∗X1,0

)
⊗ Λq

(
T ∗X1,0

)
.

We denote the space of smooth sections of Λp,qT ∗M by Ap,q = Γ(X,Λp,qT ∗M).

We can study how the exterior differential behaves with respect to this decomposition. We

have the following:
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Proposition 2.26. There exists operators ∂ : Ap,q → Ap+1,q and µ : Ap,q → Ap+2,q−1 such

that the exterior differential d decomposes as

d = µ+ ∂ + ∂ + µ ,

with ∂ and µ are the conjugate operators to ∂ and µ respectively.

Proof. The exterior differential d is a local operator. Any (p, q)-form γ can be written down

locally as

γ =
∑

|I|=p,|J |=q

fI,J α
I ∧ αJ

with {α1, . . . , αn} a local basis of A1,0.

Lemma 2.27. The operators ∂ and µ satisfy the following properties:

(i) the Leibniz rule,

(ii) ∂ is C-linear and µ is function linear, and

(iii) the following identities hold:

µ∂ + ∂µ = 0 , ∂2 + ∂µ+ µ∂ = 0 ,

µ2 = 0 , µµ+ ∂∂ + ∂∂ + µµ = 0 .

Proof. Exercise.

Since µ is function-linear, we can identify the operator µ acting on (0, 1)-forms with a tensor

NJ ∈ Γ
(
X,Hom(T ∗X0,1,Λ2T ∗X1,0)

)
such that µ(α) = −NJ(α) for α ∈ A0,1.

The tensor NJ is known as the Nijenhuis tensor and will play a key role in our discussion.

Under the canonical identification Hom(T ∗X0,1,Λ2T ∗X1,0) ∼= Λ2T ∗X1,0⊗TX0,1, we can view

NJ as a skew-symmetric map

NJ : TX1,0 × TX1,0 → TX0,1 .

Lemma 2.28. Under the identification above, the Nijenhuis tensor is given by

NJ(X, Y ) = ([X, Y ])0,1 .

Proof. Let α be a (0, 1)-form and X, Y J-holomorphic vector fields. By the definition of µ

and NJ , we have that
(
NJ(α)

)
(X, Y ) = −dα(X,Y ).

Now, we can expand the right-hand side using the usual formula dα(X, Y ) = Xα(Y ) −
Y α(X) − α([X, Y ]). The terms α(X) and α(Y ) by bidegree reasons, and α([X, Y ]) only

depends on the (0, 1)-part of the Lie bracket since α is a (0, 1)-form.
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Exercise 2.29. The usual definition of the Nijenhuis is

ÑJ(X, Y ) = [X, Y ] + J([JX, Y ] + [X, JY ])− [JX, JY ] .

Prove that the two definitions are equivalent (up to complexification and conjugation).

All in all, we have almost proved the following:

Proposition 2.30. On an almost complex manifold, the following are equivalent:

(i) µ = 0,

(ii) The subbundle TX1,0 is involutive,

(iii) ∂2 = 0.

Proof. The equivalence between (i) and (ii) follows from Lemma 2.28. Item (i) implies (iii)

by Lemma 2.27. Thus, we only need to show that (iii) implies (ii).

It suffices to show that ∂f([X, Y ]) = 0 for a function f and X, Y ∈ TX1,0. Now, we have

0 = ∂ 2f(X, Y ) = (d∂f)(X, Y ) = X(∂f(Y ))− Y (∂f(X))− ∂f([X, Y ])

= X(df(Y ))− Y (df(X))− ∂f([X,Y ]) = df([X, Y ])− ∂f([X, Y ])

= ∂f([X, Y ]) .

An almost complex structure is called integrable if any of the above conditions is satisfied,

motivated by the following computation:

Lemma 2.31. Let (X, J) be a complex manifold. Then NJ ≡ 0.

Proof. Let {z1, . . . , zn} be local holomorphic coordinates. Then {dz1, . . . , dzn} is (pointwise)
a basis for T ∗X1,0. In particular any α ∈ A1,0 can be locally written as

α =
n∑
k=1

fkdzk ,

In particular, we have

dα =
n∑

j,k=1

(
∂fk
∂zj

dzj +
∂fk
∂zj

dzj

)
∧ dzk .

So the vanishing of the Nijenhuis tensor is a necessary condition for (X, J) to be a complex

manifold. In fact, it is also sufficient:

Theorem 2.32 (Newlander–Nirenberg). An almost complex manifold (X, J) admits a com-

patible complex structure if and only if the almost complex structure J is integrable, i.e.

NJ ≡ 0
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The proof of the Newlander–Nirenberg amounts to constructing local J-holomorphic coordi-

nates. The details of the proof are relatively technical and involved; therefore, we will skip

them. You can find a complete proof in [Dem12]

Therefore, one could define a complex manifold as a manifold equipped with an integrable

almost complex structure.

Remark 2.33. In fact, one can take a more systematic approach to these questions from

the point of view of G-structures. In that framework, the existence of an almost complex

structure corresponds to a reduction of the frame bundle to a principal GL(n,C)-bundle,
the vanishing of the Nijenhuis tensor corresponds to the structure being 1-integrable, and

the Newlander-Nirenberg theorem says that there are no further obstructions from being

1-integrable to being integrable.

We will (hopefully) revisit the world of G-structures when we discuss the Kähler condition

in Section 7.

2.3 Cohomologies in complex manifolds

As part of our discussion, we saw that (almost) complex manifolds carry natural operators

that square to 0. In particular, this allows us to consider new cohomology theories for these

operators.

Remark 2.34. The case of almost complex manifolds is not particularly amenable to having a

good cohomology theory since the operator µ is of order 0, so cohomology groups will contain

little interesting information. However, one can take this further to produce an interesting

cohomology theory, see [CW21].

From now on, we restrict ourselves to the case of complex manifolds. Recall that, since

d2 = 0 and d = ∂ + ∂ on a complex manifold, we have ∂2 = ∂
2
= ∂∂ + ∂∂ = 0. We can

define four different cohomology theories on X:

Definition 2.35. Let (X, J) be a complex manifold.

• The Dolbeault cohomology

Hp,q

∂
(X) =

ker
(
∂ : Ap,q(X)→ Ap,q+1(X)

)
im
(
∂ : Ap,q−1(X)→ Ap,q(X)

) .
• The de Rham cohomology

Hk
dR(X) =

ker
(
d : Ak(X)→ Ak+1(X)

)
im
(
d : Ak−1(X)→ Ak(X)

) .
item The Bott–Chern cohomology

Hp,q
BC(X) =

(
ker ∂ ∩ ker ∂

im ∂∂

)p,q
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• The Aeppli cohomology

Hp,q
A (X) =

(
ker ∂∂

im ∂ + im ∂

)p,q
.

These are all well-defined, and there are canonical inclusion maps between the different

cohomologies, induced by inclusion and projection:

Hp,q
BC(X)

Hp,q
∂ (X) Hp+q

dR (X) Hp,q

∂
(X)

Hp,q
A (X)

where Hp,q
∂ (X) are defined analogously to the Dolbeault cohomology groups, and conjugation

yields the isomorphisms Hp,q
∂
∼= Hq,p

∂
.

We conclude this section by computing the Dolbeault cohomology groups Hp,q

∂
on a polydisc

Dε ⊆ Cn, for ε = (ε1, . . . , εn), with εi =∞ allowed. First, we need

Lemma 2.36 (Baby ∂-Poincaré Lemma). Let U ⊆ C be an open set containing the closed

ball Bε. For any α = fdz ∈ A0,1(U), the function

g =
1

2πi

∫
Bε

f(w)

w − z
dw ∧ dw

satisfies α = ∂g on Bε.

Proof. Let us prove that α = ∂g in a neighbourhood V of z0 ∈ Bε. Take ψ a bump function

such that ψ|V ≡ 1 and supp(ψ) ⊆ Bε, and consider the decomposition f = ψf +(1−ψ)f =:

f1 + f2, and the induced one for g. Let us check that g1 is a well-defined smooth function.

Since f1 has compact support, we can extend it to the entire complex plane, and by the

change of coordinates w = z + reiϕ, we have

1

2πi

∫
Bε

f1(w)

w − z
dw ∧ dw =

1

2πi

∫
C
f(z + reiϕ)

(eiϕdr + ireiϕdϕ) ∧ (e−iϕdr − ire−iϕdϕ)
reiϕ

=
1

π

∫
C
f(z + reiϕ)e−iϕdϕ ∧ dr ,

which is clearly smooth in B.
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All that remains is to compute ∂g. Since 1
(w−z) is holomorphic in the complement of V , it

follows from differentiation under the integral sign that ∂g2 = 0. For g1, using the expression

above, we have

∂g1 =
1

π
∂

∫
C
f(z + reiϕ)e−iϕdϕ ∧ dr

=
1

π

∫
C

(
∂f

∂w

∂(z + reiϕ)

∂z
+
∂f

∂w

(
∂(z + reiϕ)

∂z

))
e−iϕdϕ ∧ dr

=
1

π

∫
C

∂f

∂w
e−iϕdϕ ∧ dr = 1

2πi

∫
B

∂f

∂w

dw ∧ dw
w − z

= f(z) ,

where the second line follows from the chain rule from Lemma 1.3, we undid the change

of variables in the third line, and the fourth line follows by the (general) Cauchy Integral

Formula, Equation (3).

By induction on the dimension and bidegree, one shows

Lemma 2.37 (∂-Poincaré lemma). Let U ⊆ Cn be an open set containing the closed polydisc

Dε. For q > 0, if α ∈ Ap,q(U) is ∂-closed, there exists β ∈ Ap,q−1(Dε) such that α = ∂β on

the polydisc.

Proof. See [Huy05, Prop. 1.3.8].

We can now prove the Dolbeault–Grothendieck lemma:

Proposition 2.38. Let Dε be a polydisc in Cn. Then

Hp,q

∂
(Bε) =

holomorphic (p-forms) q = 0 ,

0 q > 0 .

Proof. The idea is to exhaust the polydisc Dε by a sequence of approximating polydiscs Dεi ,

and show that we can choose the approximating exact terms so that they do not change

inside the smaller polydisc.

If q > 1, the difference βi − βi−1 will then be ∂-closed, so by the ∂-Poincaré lemma, we can

choose γi such that ∂γ = βi − βi−1.

Take ψ a bump function supported on Dεi with ψ|Dεi
= 1 and set β̂i+1 = βi+1 + ∂(ψγ). The

sequence β̂i has the desired properties.

The case q = 1 follows a similar idea, where now ∂γ is replaced by a suitable holomorphic

polynomial.

The full details can be found in [Huy05, Cor. 1.3.9].
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3 Sheaves and their cohomologies

We now introduce the language and techniques from sheaf theory. While we will not use

them to their fullest extent, they are a convenient tool for presenting and proving some of our

results, especially when considering cohomology and vector bundles. A more detailed discus-

sion can be found in [Wel08] and references therein. For a more detailed and comprehensive

discussion using derived functors, we refer the reader to [Har77, §3].

Definition 3.1. A presheaf F of abelian groups (sets, rings, ...) on a topological space X

is given by:

(i) For every open set U ⊆ X, an abelian group F(U)

(ii) For every inclusion V ⊆ U , a mapping F(U)→ F(V ) (restriction map)

such that rUU = id and rVW ◦ rUV = rUW for W ⊆ V ⊆ U .

Definition 3.2. A presheaf is called a sheaf if for every family of sections si ∈ F(Ui), i ∈ I,
with si|Ui∩Uj

= sj|Ui∩Uj
, there exists a unique section s ∈ F(U) such that s|Ui

= si.

Equivalently, the sequence:

0→ F(U)→
∏
i

F(Ui)→
∏
i,j

F(Ui ∩ Uj)

is exact, where the map is (si) 7→ (si|Ui∩Uj
− sj|Ui∩Uj

).

We can now give a (perhaps) more intuitive definition of a stalk as a direct limit of a presheaf.

Definition 3.3. The stalk of a presheaf F at x ∈ X is:

Fx := lim−→
x∈U
F(U) =

⋃
x∈U

F(U)/ ∼

where sU ∼ sV if sU |W = sV |W for some x ∈ W ⊆ U ∩ V .

Associated with a presheaf, we have an associated topological space:

Definition 3.4. For a presheaf F , define:

Ét(F) :=
⋃
x∈X

Fx
p−→ X with p−1(x) = Fx

The sets [U, s] = {sx | x ∈ U} for U open, s ∈ F(U), form a basis for a topology on Ét(F),
and p is a local homeomorphism.

The sheafificationF+ of a presheaf F is defined by:

F+(U) = {s : U → Ét(F) | s is a continuous section}

There is a natural map F(U) → F+(U) compatible with restrictions. If F is a sheaf, this

map is an isomorphism.
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An easy (but important) example is that of the constant presheaf and the locally constant

sheaf:

Example 3.5. If F const is the constant presheaf with F const(U) = A, then:

Ét(F const) = X × Adisc, (F const)+ = A

Given a morphism of sheaves, we can study the associated kernel and image. First, we have

Lemma 3.6. Let φ : F → G be a morphism of sheaves. Then the presheaf kerφ is a sheaf.

Proof. To prove that kerφ is a sheaf, we need to prove that, for Uopen and {Ui} an open

cover of U , we have

(i) (Existence) if si ∈ kerφ(Ui) such that si|Ui∩Uj
= sj|Ui∩Uj

, then there exists s ∈ kerφ(U)

such that s|Ui
= si for all i;

(ii) (Uniqueness) if s ∈ kerφ(U) and s|Ui
= 0, then s = 0.

To show (i), notice that the candidate s exists in F(U) since F is a sheaf. Thus, we only

need to show that s ∈ kerφ(U).

Indeed φ(si) = 0 by hypothesis, and since G is also a sheaf, this glue together to show that

φ(s) = 0, as needed.

Uniqueness follows readily since F is a sheaf.

In general, however the presheaves U 7→ imφU and U 7→ cokerφU are not sheaves. For

instance, one may consider the image presheaf of the exponential map exp : OC → O∗
C.

Then, for an open set U , exp(U) is the ring of holomorphic functions on U with a well-

defined logarithm. But taking U1 = C \ {x ≥ 0} and U2 = C \ {x ≤ 0} suffices to see that

the image presheaf is not a sheaf, as there is no logarithm defined in C \ {0}.

Definition 3.7. For a morphism φ : F → G of sheaves, we define:

• The image sheaf : imφ := (U 7→ imφU)
+

• The cokernel sheaf : cokerφ := (U 7→ cokerφU)
+

A sequence F φ−→ G ψ−→ H is called exact at G if kerψ = imφ.

Similarly, we say the morphism φ is injective if 0 → F φ−→ G is exact; and surjective if

F φ−→ G → 0 is exact.

We have the following useful characterisation of exactness:

Lemma 3.8. The sequence F φ−→ G ψ−→ H is exact iff Fx
φx−→ Gx

ψx−→ Hx is exact for all

x ∈ X.
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Proof. Exercise.

The following sequences are examples of exact sequences:

0→ Z 2πi−−→ OX
exp−−→ O∗

X → 0

0→ OX → OX → S(0)→ 0

0→ C→ A0
X

d−→ A1
X → . . .

0→ Ωp
X → A

p,0
X

∂−→ Ap,1X → · · ·

Given a continuous map f : X → Y between topological spaces, we get induced maps on

sheaves on them.

Definition 3.9. Let f : X → Y a continuous map, F a sheaf on X and G a sheaf on Y .

• The direct image sheaf of F is defined as f∗F(U) = F(f−1(U)) for U ⊆ Y .

• The inverse image sheaf of G is defined as f−1G(U) = lim
f(U)⊆V

G(V ), where the direct

limit runs over all open subsets V of Y that contain f(U).

One needs to check that the definitions are indeed well-posed, i.e. that the presheaves that

are defined are indeed sheaves, but we omit that.

The direct and inverse image sheaves satisfy some nice properties:

Lemma 3.10. Let f : X → Y and g : Y → Z be continuous maps. Then,

• g∗ ◦ f∗ = (g ◦ f)∗, f−1 ◦ g−1 = (g ◦ f)−1

• f−1 is exact (i.e. it preserves exactness)

• f∗ and f−1 are adjoint to each other: Hom(f−1F ,G) = Hom(F , f∗G).

Lemma 3.11. Consider ιZ ↪→ X a continuous embedding, and F a sheaf on X. Let

F|Z = ι−1F . Then,

• if Z = {x} is a point, F|Z = Fx,

• if Z is closed, F(Z) = F|Z(Z), and

• if Z is open, F|Z(V ) = F(Z ∩ V ).

We omit the proofs of these lemmas. Finally, for completeness, we introduce the following

definitions

Definition 3.12. A ringed space is a pair (X,R) where R is a sheaf of rings on X.

A morphism of ringed spaces (X,R)→ (Y,S) is a continuous map f : X → Y together with

a morphism of sheaves of rings f−1S → R.
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Definition 3.13. Let (X,R) be a ringed space. A sheaf of R-modules is a sheaf of abelian

groupsM with a map R×M→M such thatM(U) is an R(U)-module for all open U .

Examples of ringed spaces are smooth manifolds: (X, C∞X ), and complex manifolds: (X,OX).
Examples of R-modules are discussed in the exercises.

3.1 Sheaf cohomology

Let us now discuss the issue of exactness (or rather its failure). We saw (or rather left as an

exercise) that taking stalks is an exact operation. More generally, we have

Lemma 3.14. Let

0→ F → G → H → 0

be a short exact sequence of sheaves. Then, for any U , we have

0→ F(U)→ G(U)→ H(U)

Proof.

In general, we lose exactness on the right, as exemplified by the fact that the exponential

map exp : OC → O∗
C is not surjective when evaluated over U = C \ {0}.

Cohomology is then introduced as a measure of failure for right-exactness. The correct way

to understand sheaf cohomology is via the theory of derived functors, which is unfortunately

beyond the scope of this course. Instead, we will present an ad-hoc construction for it.

Definition 3.15. A sheaf I is injective if for any injection A ↪→ B and map A → I, there
exists a map B → I making the diagram commute.

Definition 3.16. A complex of sheaves is a sequence:

· · · → F i−1 d−→ F i d−→ F i+1 → · · ·

A resolution of a sheaf F is a complex F• with a map F ↪→ F0 that is exact.

An injective resolution is a resolution where all I i are injective.

Definition 3.17. The sheaf cohomology is defined as:

H i(X,F) := H i(Γ(X, I•))

for an injective resolution F → I•.

Notice that, in particular H0(X,F) = Γ(X,F) = F(X). A priori, this definition is subject

to the existence of injective resolutions and a choice thereof. Fortunately, we have:

Proposition 3.18.
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(i) Every sheaf F admits an injective resolution. (The category of sheaves has enough

injectives.)

(ii) For a morphism of sheaves φ : F → G and injective resolutions I• and J • of F and

G, there exist φk : Ik → J k such that [TODO] commutes. Moreover, any choice of

maps {φk} induces the same maps on cohomology.

(iii) Injective sheaves are flabby, i.e. the map F(U)→ F(V ) for any V ⊆ U open.

(iv) If

0→ F → G → H → 0

is exact and F is flabby, then

0→ F(U)→ G(U)→ H(U)→ 0

for all open subsets U .

In particular, this implies that the sheaf cohomology groups are well-defined, and we have

Theorem 3.19. Consider the short exact sequence of sheaves

0→ F → G → H → 0 .

Then there exists a long exact sequence of cohomology:

0→ H0(X,F)→ H0(X,G)→ H0(X,H)→ H1(X,F)→ H1(X,G)→ H1(X,H)→ H2(X,F)→ . . .

is exact

Proof. Use the fact that the injective resolution is flabby, along with the snake lemma/

diagram chasing, to construct the connecting morphisms.

Whilst injective sheaves and injective resolutions are convenient to define sheaf cohomology,

they tend to be quite cumbersome and hard to construct in explicit situations. Instead, it

is more convenient to work with acyclic sheaves and resolutions

Definition 3.20. A sheaf A is acyclic if H i(X,A) = 0 for i > 0. An acyclic resolution is a

resolution A• by acyclic sheaves Ai.

The following result captures the convenience of working with acyclic resolution.

Theorem 3.21. Let A• be an acyclic resolution of F , then:

H i(X,F) = H i(Γ(X,A•))
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Proof. Split the resolution into short exact sequences:

0→ Ki → Ai → Ki+1 → 0

with Ki := ker
(
Ai → Ai+1

) ∼= im
(
Ai−1 → Ai

)
.. The long exact sequence of cohomology

yields the desired result.

Exercise 3.22. Write down the missing details of the proof above.

We now claim a fact that will be of great importance, but we do not have the time to prove

it:

Theorem 3.23. All sheaves of AR-modules are acyclic.

The proof of the theorem relies on constructing a particular type of acyclic sheaves called

soft, via a partition of unity on X. This dependence on the partition of unity is key in the

construction.

As a corollary of this fact, we have

Corollary 3.24. Let X be a smooth manifold. Then

Hk
dR(X,R) ∼= Hk(X,R) .

Similarly, on a complex manifold, we have

Hp,q

∂
(X) ∼= Hq(X,Ωp)

Proof. The smooth Poincaré lemma implies that the locally constant sheaf R admits the

acyclic resolution

A•
X,R := 0→ A0

X,R
d−→ A1

X,R
d−→ A2

X,R
d−→ . . .

Similarly, the ∂-Poincaré lemma implies that sheaf of holomorphic p-forms admits the acyclic

resolution

Ap,•X,R := 0→ Ap,0X,R
∂−→ Ap,1X,R

∂−→ Ap,2X,R
∂−→ . . .

3.2 Čech cohomology

We now introduce another, more combinatorial, cohomology theory for sheaves. Whilst it

is more ”hands-on” and computationally easy to work with, one does not have all the good

properties of sheaf cohomology ”on the nose”.

Definition 3.25. Let F be a sheaf on X and U ={Ui}i∈I an open cover. For each σ =

(i0, . . . , iq) ∈ Iq+1, consider Uσ = Ui0 ∩ . . . Uiq and ισ : Uσ ↪→ X the inclusion.
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(i) The sheaf of Čech chains with respect to the cover U is:

Cq(U ,F) =
∏

σ∈Iq+1

(ισ)∗(ισ)
−1F

(ii) The Čech boundary operator is:

δ : Cq(U ,F)→ Cq+1(U ,F)

(sσ)σ 7→
q+1∑
k=0

(−1)k (si0,...,ǐk,...iq+1
)|Ui0,...,iq+1

A (tedious) computation shows that δ2 = 0, so
(
Cq(U ,F), δ

)
is a complex of sheaves. In

particular, we can define the (relative) Čech cohomology groups:

Ȟq(U ,F) :=
ker
(
Cq(U ,F) δ−→ Cq+1(U ,F)

)
im
(
Cq−1(U ,F) δ−→ Cq(U ,F)

) .

In degree zero, we have

C0(U ,F) =
∏
Ui

F(Ui)
δ−→
∏
Ui∩Uj

F(Ui ∩ Uj) = C1(U ,F)

with δ(s)ij = sj|Ui∩Uj
−si|Ui∩Uj

. Since F is a sheaf, Ȟ0(U ,F) = ker δ = H0(X,F). However,
the higher cohomology groups will depend on the chosen cover. To remedy this, we define

Definition 3.26. Let X be a topological space and F a sheaf. We define the Čech coho-

mology groups as

Ȟq(X,F) = lim
U cover

Ȟq(U ,F) ,

where the direct limit is taken over finer and finer covers.

The result that ties up all the discussion is a celebrated result due to Leray:

Theorem 3.27 (Leray’s theorem). There is an isomorphism:

Hq(X,F) ∼= Ȟq(X,F)

I have been particularly vague and stated many (deep and hard) results at face value, which

the reader should be pretty unhappy about (I know I am). Unfortunately, I find it the

lesser of all evils, as proceeding in our discussion without the tools of sheaf theory and its

cohomologies would prove nearly impossible. However, establishing and discussing all the

material summarised in this section in detail could take an entire course on its own.

30



4 Holomorphic bundles, Kodaira dimension and Siegel’s

theorem

Recall the definition of smooth real (resp. complex) vector bundles:

Definition 4.1. A real (resp. complex) vector bundle of rank r over a manifold X is a

smooth manifold E together with a smooth projection π : E → X such that:

• For each x ∈ X, the fibre Ex = π−1(x) is a real (resp. complex) vector space of

dimension r.

• There exists an open cover {Ui} of X and diffeomorphisms φi : π
−1(Ui) → Ui × Rr

(resp. Cr) such that:

1. π = pr1 ◦ φi on π−1(Ui), where pr1 denotes the projection to the first factor.

2. On Ui∩Uj, the transition functions φij = φi◦φ−1
j : (Ui∩Uj)×Rr → (Ui∩Uj)×Rr

are of the form (x, v) 7→ (x, gij(x)v) where gij ∈ C∞(Ui ∩ Uj,GL(r,R)
)

Therefore, one makes the analogue definition for the holomorphic case:

Definition 4.2 (Holomorphic Vector Bundle). A holomorphic vector bundle of rank r on

a complex manifold X is a complex manifold E together with a holomorphic projection

π : E → X such that:

• For each x ∈ X, the fibre Ex = π−1(x) is a complex vector space of dimension r.

• There exists an open cover {Ui} of X and biholomorphic maps φi : π
−1(Ui)→ Ui×Cr

such that:

1. π = pr1 ◦ φi on π−1(Ui)

2. On Ui∩Uj, the transition functions φij = φi◦φ−1
j : (Ui∩Uj)×Cr → (Ui∩Uj)×Cr

are of the form (x, v) 7→ (x, gij(x)v) where gij : Ui∩Uj → GLr(C) are holomorphic.

Vector bundles are classified by the appropriate (Čech) cohomology group:

Proposition 4.3. Up to isomorphism, we have the following correspondences:

• real vector bundles of rank r
1:1←−−−−−→ Ȟ1

(
X,GL(r, C∞(X,R)

)
,

• complex vector bundles of rank r
1:1←−−−−−→ Ȟ1

(
X,GL(r, C∞(X,C)

)
• holomorphic vector bundles of rank r

1:1←−−−−−→ Ȟ1
(
X,GL(r,OX)

)
,

where GL(r,F) is the sheaf of invertible rank k matrices with coefficients in the sheaf F .
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Proof. Exercise.

Understanding the groups Ȟ1
(
X,GL(r,A)

)
in general can be very hard, and there are no

general results, except for the case r = 1:

Lemma 4.4. Complex line bundles over X are in one-to-one correspondence with elements

of H2(X,Z). Similarly, real line bundles over X are in one-to-one correspondence with

elements of H1(X,Z/2Z).

Proof. Consider the exponential sequence

0→ Z 2πi−−−→ AC
exp−−→ A∗

C → 0 .

We have a long exact sequence of cohomology

· · · → H1(X,AC)→ H1(X,A∗
C)

c1−→ H2(X,Z)→ H2(X,AC)→ . . . .

Since AC is acyclic, the map c1 : H
1(X,A∗

C)→ H2(X,Z) is a bijection.

Similarly, for the real line bundle case, consider the short exact sequence

0→ AR → A∗
R → Z/2Z→ 0 .

In fact, whilst H1(X,GL(r,F) does not carry any additional structure, H1(X,GL(1,F) ∼=
H1(X,F∗) always carries the additional structure of an abelian group:

Lemma 4.5. The set H1(X,F∗) carries the structure of an abelian group, where the tensor

product induces the group operation, and inverses are given by dualisation

L−1 := L∗ ∼= Hom(L,C) .

Proof. Immediate.

Corollary 4.6. The maps

c1 : H
1(X,A∗

C)→ H2(X,Z) w1 : H
1(X,A∗

R)→ H1(X,Z/2Z)

are group morphisms.

Let us now focus on the case of holomorphic line bundles:

Definition 4.7. The group of isomorphism classes of line bundles is called the Picard group:

Pic(X) = H1(X,O∗
X).

Again, by using the exponential short exact sequence, we have:
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Proposition 4.8. Every complex line bundle admits a holomorphic structure. The set

of (non-isomorphic) holomorphic structures on a smooth line bundle is in bijection with

H1(X,OX)/H1(X,Z)

Proof. Comparing the smooth and holomorphic exponential sequences, we have:

0 Z/2Z OX O∗
X 0

0 Z/2Z AC A∗
C 0

∼=

The claim follows from the induced map of long exact sequences.

Let us now introduce the first example of (non-trivial) holomorphic line bundle; the tauto-

logical line bundle of the complex projective space CPn:

Proposition 4.9. The tautological line bundle O(−1) on Pn is defined by:

O(−1) = {(l, z) | z ∈ l} ⊆ Pn × Cn+1

with projection π : O(−1)→ Pn.

Proof. On affine charts Ui = {zi ̸= 0}, we have trivializations:

π−1(Ui) ∼= Ui × C, (l, z) 7→ (l, zi)

The transition functions are ψij(l) =
zi
zj
.

Definition 4.10. For k > 0, define O(k) = O(−1)⊗−k, and O(0) = OPn .

Proposition 4.11. The global sections of O(k) are given by:

H0(Pn,O(k)) = C[z0, . . . , zn]k for k ≥ 0

Proof. Any homogeneous polynomial P ∈ C[z0, . . . , zn]k defines a section sP of O(k) via:

sP (l) = (l, P (z)) for z ∈ l

Conversely, any section s ∈ H0(Pn,O(k)) gives a function F : Cn+1 \ {0} → C satisfying

F (λz) = λkF (z), which is a homogeneous polynomial of degree k.

Definition 4.12. The canonical bundle of a complex manifold X is the bundle of holomor-

phic top forms KX =
∧dimX Ω1

X .

Definition 4.13. A compact complex manifold with KX
∼= OX is called (weak) Calabi-Yau.
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5 Divisors and blow-ups

6 Metrics and connections

7 Kähler Manifolds

8 Positivity and vanishing

9 The Kodaira embedding theorem

10 Kodaira-Spencer deformation theory

11 The Tian-Todorov theorem
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