From spheres to new examples of isoparametric hypersurfaces in symmetric spaces

Víctor Sanmartín López

Joint work with Miguel Domínguez Vázquez

Symmetries in Riemannian Geometry King's College London

Contents

Introduction and Main Theorem

Symmetric spaces of non-compact type

Sketch of the proof

Isoparametric hypersurface

A hypersurface is said to be $isoparametric :\Leftrightarrow it and its nearby equidistant hypersurfaces have constant mean curvature$

Isoparametric hypersurface

A hypersurface is said to be $isoparametric :\Leftrightarrow it and its nearby equidistant hypersurfaces have constant mean curvature$

Isoparametric hypersurface

A hypersurface is said to be $isoparametric :\Leftrightarrow it and its nearby equidistant hypersurfaces have constant mean curvature$

Isoparametric hypersurface

A hypersurface is said to be **isoparametric**: \Leftrightarrow it and its nearby equidistant hypersurfaces have constant mean curvature

- $\bullet \ \, \text{Homogeneous hypersurface} \Rightarrow \text{Isoparametric hypersurface} \\$
- $M\subset ar{M}$ homogeneous : $\Leftrightarrow M=G\cdot p$ for some $G\subset I(ar{M})$, $p\in ar{M}$

Isoparametric hypersurface

A hypersurface is said to be **isoparametric**: \Leftrightarrow it and its nearby equidistant hypersurfaces have constant mean curvature

- ullet Homogeneous hypersurface \Rightarrow Isoparametric hypersurface
- $M \subset \bar{M}$ homogeneous : $\Leftrightarrow M = G \cdot p$ for some $G \subset I(\bar{M})$, $p \in \bar{M}$
- $G \circlearrowright \overline{M}$ cohomogeneity one action \Rightarrow Isoparametric family

• \mathbb{R}^n (Segre, 1939):

• \mathbb{R}^n (Segre, 1939): Homogeneous \Leftrightarrow Isoparametric

• \mathbb{R}^n (Segre, 1939): Homogeneous \Leftrightarrow Isoparametric

• $\mathbb{R}H^n$ (Cartan, 1939):

• \mathbb{R}^n (Segre, 1939): Homogeneous \Leftrightarrow Isoparametric

• $\mathbb{R}H^n$ (Cartan, 1939): Homogeneous \Leftrightarrow Isoparametric

• \mathbb{R}^n (Segre, 1939): Homogeneous \Leftrightarrow Isoparametric

• $\mathbb{R}H^n$ (Cartan, 1939): Homogeneous \Leftrightarrow Isoparametric

- \mathbb{S}^n : Principal curvatures $\Rightarrow \{1, 2, 3, 4, 6\}$
 - Inhomogeneous isoparametric hypersurfaces (Ferus, Karcher, Münzner)
 - 2 Isoparametric hypersurfaces are homogeneous or FKM

- Focal submanifolds of isoparametric families are minimal
- $\textbf{②} \ \, \textbf{Isoparametric} + \textbf{constant principal curvatures} \Rightarrow \textbf{principal curvatures} \\ \textbf{of the focal submanifold independent on the normal}$

- Focal submanifolds of isoparametric families are minimal
- ② Isoparametric + constant principal curvatures ⇒ principal curvatures of the focal submanifold independent on the normal ⇔: CPC

- Focal submanifolds of isoparametric families are minimal
- 2 Isoparametric + constant principal curvatures \Rightarrow principal curvatures of the focal submanifold independent on the normal \Leftrightarrow : CPC

- Focal submanifolds of isoparametric families are minimal
- $\textbf{②} \ \, \mathsf{Isoparametric} + \mathsf{constant} \,\, \mathsf{principal} \,\, \mathsf{curvatures} \, \Rightarrow \mathsf{principal} \,\, \mathsf{curvatures} \\ \mathsf{of} \,\, \mathsf{the} \,\, \mathsf{focal} \,\, \mathsf{submanifold} \,\, \mathsf{independent} \,\, \mathsf{on} \,\, \mathsf{the} \,\, \mathsf{normal} \, \Leftrightarrow : \mathsf{CPC} \\$

- Focal submanifolds of isoparametric families are minimal
- 2 Isoparametric + constant principal curvatures \Rightarrow principal curvatures of the focal submanifold independent on the normal \Leftrightarrow : CPC

Theorem (Ge, Tang, 2012)

- Focal submanifolds of isoparametric families are minimal
- $\textbf{②} \ \, \mathsf{Isoparametric} + \mathsf{constant} \,\, \mathsf{principal} \,\, \mathsf{curvatures} \Rightarrow \mathsf{principal} \,\, \mathsf{curvatures} \\ \mathsf{of} \,\, \mathsf{the} \,\, \mathsf{focal} \,\, \mathsf{submanifold} \,\, \mathsf{independent} \,\, \mathsf{on} \,\, \mathsf{the} \,\, \mathsf{normal} \,\, \Leftrightarrow : \, \mathsf{CPC} \\$

Totally geodesic ⊂ CPC

Theorem (Ge, Tang, 2012)

- Focal submanifolds of isoparametric families are minimal
- $\textbf{②} \ \, \mathsf{Isoparametric} + \mathsf{constant} \ \mathsf{principal} \ \mathsf{curvatures} \Rightarrow \mathsf{principal} \ \mathsf{curvatures} \\ \mathsf{of} \ \mathsf{the} \ \mathsf{focal} \ \mathsf{submanifold} \ \mathsf{independent} \ \mathsf{on} \ \mathsf{the} \ \mathsf{normal} \ \Leftrightarrow : \ \mathsf{CPC} \\$

Totally geodesic ⊂ CPC

Theorem (Ge, Tang, 2012)

- Focal submanifolds of isoparametric families are minimal
- $\textbf{②} \ \, \mathsf{Isoparametric} + \mathsf{constant} \,\, \mathsf{principal} \,\, \mathsf{curvatures} \Rightarrow \mathsf{principal} \,\, \mathsf{curvatures} \\ \mathsf{of} \,\, \mathsf{the} \,\, \mathsf{focal} \,\, \mathsf{submanifold} \,\, \mathsf{independent} \,\, \mathsf{on} \,\, \mathsf{the} \,\, \mathsf{normal} \,\, \Leftrightarrow : \mathsf{CPC} \\$

Totally geodesic \subset CPC \subset Austere \subset Minimal

Austere : \Leftrightarrow Principal curvatures invariant under change of sign

Theorem (Ge, Tang, 2012)

- Focal submanifolds of isoparametric families are minimal
- ② Isoparametric + constant principal curvatures ⇒ principal curvatures of the focal submanifold independent on the normal ⇔: CPC

Totally geodesic \subset CPC \subset Austere \subset Minimal

 $Austere: \Leftrightarrow Principal\ curvatures\ invariant\ under\ change\ of\ sign$

Theorem (Berndt, -, 2018)

- Family of homogeneous non totally geodesic CPC submanifolds
- Objectives:
 - Understand better cohomogeneity one actions
 - Produce new examples of isoparametric hypersurfaces

All the known examples: tubes around an austere focal submanifold

- All the known examples: tubes around an austere focal submanifold
- Classification in complete Riemannian families: $\mathbb{R}H^n$, $\mathbb{C}H^n$
- Inhomogeneous examples only in $\mathbb{C}H^n$, $\mathbb{H}H^n$, $\mathbb{O}H^2$ and "extensions"

- All the known examples: tubes around an austere focal submanifold
- Classification in complete Riemannian families: $\mathbb{R}H^n$, $\mathbb{C}H^n$
- Inhomogeneous examples only in $\mathbb{C}H^n$, $\mathbb{H}H^n$, $\mathbb{O}H^2$ and "extensions"

Dynkin diagram $\alpha_1 \stackrel{A_r}{\sim} \alpha_r$ α_{5}

- All the known examples: tubes around an austere focal submanifold
- Classification in complete Riemannian families: $\mathbb{R}H^n$, $\mathbb{C}H^n$
- Inhomogeneous examples only in $\mathbb{C}H^n$, $\mathbb{H}H^n$, $\mathbb{O}H^2$ and "extensions"

Main Theorem

Each symmetric space of non-compact type and rank ≥ 3 admits inhomogeneous isoparametric families of hypersurfaces with non-constant principal curvatures around a non-austere focal submanifold (infinitely many non-congruent if rank ≥ 4)

- All the known examples: tubes around an austere focal submanifold
- Classification in complete Riemannian families: $\mathbb{R}H^n$, $\mathbb{C}H^n$
- Inhomogeneous examples only in $\mathbb{C}H^n$, $\mathbb{H}H^n$, $\mathbb{O}H^2$ and "extensions"

Main Theorem

Each symmetric space of non-compact type and rank ≥ 3 admits inhomogeneous isoparametric families of hypersurfaces with non-constant principal curvatures around a non-austere focal submanifold (infinitely many non-congruent if rank > 4)

• First examples with non-austere focal submanifold

- All the known examples: tubes around an austere focal submanifold
- Classification in complete Riemannian families: $\mathbb{R}H^n$, $\mathbb{C}H^n$
- Inhomogeneous examples only in $\mathbb{C}H^n$, $\mathbb{H}H^n$, $\mathbb{O}H^2$ and "extensions"

Main Theorem

Each symmetric space of non-compact type and rank ≥ 3 admits inhomogeneous isoparametric families of hypersurfaces with non-constant principal curvatures around a non-austere focal submanifold (infinitely many non-congruent if rank > 4)

- First examples with non-austere focal submanifold
- Existence in any symmetric space of rank ≥ 3

$$\overset{\circ}{\alpha_1}$$
 - $\overset{\mathsf{BC}_{r_{\circ}}}{\alpha_{r-1}} \overset{\circ}{\alpha_{r}}$

- All the known examples: tubes around an austere focal submanifold
- Classification in complete Riemannian families: $\mathbb{R}H^n$, $\mathbb{C}H^n$
- Inhomogeneous examples only in $\mathbb{C}H^n$, $\mathbb{H}H^n$, $\mathbb{O}H^2$ and "extensions"

Main Theorem

Each symmetric space of non-compact type and rank ≥ 3 admits inhomogeneous isoparametric families of hypersurfaces with non-constant principal curvatures around a non-austere focal submanifold (infinitely many non-congruent if rank > 4)

- First examples with non-austere focal submanifold
- Existence in any symmetric space of rank ≥ 3

$$\alpha_1$$
 - $\underline{\underline{\mathsf{BC}_{r_0}}}$

• Inhomogeneous example in $\mathbb{R}H^2 \times \mathbb{R}H^2 \times \mathbb{R}H^2$

 $M \cong G/K$ symmetric space of non-compact type

• $G = I^0(M)$

• K: isotropy group of $o \in M$

 $M\cong G/K$ symmetric space of non-compact type

• $G = I^0(M)$

- K: isotropy group of $o \in M$
- $\bullet \ \mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p} \ \mathsf{Cartan} \ \mathsf{decomposition}$
- Inner product in \mathfrak{g} : $\langle X, Y \rangle = -B(\theta X, Y)$, B Killing form

 $M \cong G/K$ symmetric space of non-compact type

• $G = I^0(M)$

- K: isotropy group of $o \in M$
- ullet $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$ Cartan decomposition
- Inner product in \mathfrak{g} : $\langle X, Y \rangle = -B(\theta X, Y)$, B Killing form
- $\mathfrak{a} \subset \mathfrak{p}$ maximal abelian subspace, dim $\mathfrak{a} = \operatorname{rank} M$
- $\{ad(H): H \in \mathfrak{a}\}$ self-adjoint commutative endomorphisms
- ullet $\mathfrak{g}=\mathfrak{g}_0\oplus\left(igoplus_{lpha\in\Sigma}\mathfrak{g}_lpha
 ight)$ root space decomposition
- $\mathfrak{g}_{\lambda} = \{X \in \mathfrak{g} : [A, X] = \lambda(A)X, \text{ for all } A \in \mathfrak{a}\}, \lambda \in \mathfrak{a}^*$
- $\bullet \ \Sigma = \{\lambda \in \mathfrak{a}^* \ : \ \mathfrak{g}_\lambda \neq 0\} \backslash \{0\} \ \text{set of roots} \leadsto \Sigma = \Sigma^+ \cup \Sigma^-$

 $M \cong G/K$ symmetric space of non-compact type

•
$$G = I^0(M)$$

•
$$K$$
: isotropy group of $o \in M$

- ullet $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$ Cartan decomposition
- Inner product in \mathfrak{g} : $\langle X, Y \rangle = -B(\theta X, Y)$, B Killing form
- $\mathfrak{a} \subset \mathfrak{p}$ maximal abelian subspace, dim $\mathfrak{a} = \operatorname{rank} M$
- $\{ad(H): H \in \mathfrak{a}\}$ self-adjoint commutative endomorphisms
- $\mathfrak{g}=\mathfrak{g}_0\oplus\left(igoplus_{lpha\in\Sigma}\mathfrak{g}_lpha
 ight)$ root space decomposition
- $\mathfrak{g}_{\lambda} = \{X \in \mathfrak{g} : [A, X] = \lambda(A)X, \text{ for all } A \in \mathfrak{a}\}, \ \lambda \in \mathfrak{a}^*$
- $\bullet \ \Sigma = \{\lambda \in \mathfrak{a}^* \ : \ \mathfrak{g}_\lambda \neq 0\} \backslash \{0\} \ \text{set of roots} \leadsto \Sigma = \Sigma^+ \cup \Sigma^-$

$$\mathfrak{a}^* \longrightarrow \mathfrak{a}$$
 $\lambda \mapsto H_{\lambda}$

$$\lambda(H) = \langle H_{\lambda}, H \rangle$$
, for all $H \in \mathfrak{a}$

 $M \cong G/K$ symmetric space of non-compact type

•
$$G = I^0(M)$$

•
$$K$$
: isotropy group of $o \in M$

- ullet $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$ Cartan decomposition
- Inner product in \mathfrak{g} : $\langle X, Y \rangle = -B(\theta X, Y)$, B Killing form
- $\mathfrak{a} \subset \mathfrak{p}$ maximal abelian subspace, dim $\mathfrak{a} = \operatorname{rank} M$
- $\{ad(H): H \in \mathfrak{a}\}$ self-adjoint commutative endomorphisms
- $\mathfrak{g}=\mathfrak{g}_0\oplus\left(igoplus_{lpha\in\Sigma}\mathfrak{g}_lpha
 ight)$ root space decomposition
- $\mathfrak{g}_{\lambda} = \{X \in \mathfrak{g} : [A, X] = \lambda(A)X, \text{ for all } A \in \mathfrak{a}\}, \lambda \in \mathfrak{a}^*$
- $\bullet \ \Sigma = \{\lambda \in \mathfrak{a}^* \ : \ \mathfrak{g}_\lambda \neq 0\} \backslash \{0\} \ \text{set of roots} \leadsto \Sigma = \Sigma^+ \cup \Sigma^-$

$$\begin{array}{ccc}
\mathfrak{a}^* & \longrightarrow & \mathfrak{a} \\
\lambda & \mapsto & H_{\lambda}
\end{array}$$

$$\lambda(H) = \langle H_{\lambda}, H \rangle$$
, for all $H \in \mathfrak{a}$

 $M \cong G/K$ symmetric space of non-compact type

•
$$G = I^0(M)$$

•
$$K$$
: isotropy group of $o \in M$

- ullet $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$ Cartan decomposition
- Inner product in \mathfrak{g} : $\langle X, Y \rangle = -B(\theta X, Y)$, B Killing form
- $\mathfrak{a} \subset \mathfrak{p}$ maximal abelian subspace, dim $\mathfrak{a} = \operatorname{rank} M$
- $\{ad(H): H \in \mathfrak{a}\}$ self-adjoint commutative endomorphisms
- ullet $\mathfrak{g}=\mathfrak{g}_0\oplus \left(igoplus_{lpha\in\Sigma}\mathfrak{g}_lpha
 ight)$ root space decomposition
- $\mathfrak{g}_{\lambda} = \{X \in \mathfrak{g} : [A, X] = \lambda(A)X, \text{ for all } A \in \mathfrak{g}\}, \lambda \in \mathfrak{g}^*$
- $\bullet \ \Sigma = \{\lambda \in \mathfrak{a}^* \ : \ \mathfrak{g}_\lambda \neq 0\} \backslash \{0\} \ \text{set of roots} \leadsto \Sigma = \Sigma^+ \cup \Sigma^-$

Iwasawa decomposition

$$ullet$$
 $\mathfrak{g}=\mathfrak{k}\oplus \widehat{\mathfrak{a}\oplus \mathfrak{n}}$

$$ullet$$
 $\mathfrak{n}=igoplus_{lpha\in\Sigma^+}\mathfrak{g}_lpha$ nilpotent

 $M \cong AN$ solvable Lie group with left invariant metric

Construction: focal submanifold

General approach

- $\mathfrak{a}\oplus\mathfrak{n}=\mathfrak{a}\oplus(igoplus_{lpha\in\Sigma^+}\mathfrak{g}_lpha)$: Iwasawa decomposition
- $\bullet \ \mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$ Lie subalgebra of $\mathfrak{a} \oplus \mathfrak{n}$
- ullet S connected Lie subgroup of AN with Lie algebra ${\mathfrak s}$

$$S \cdot o$$

Construction: focal submanifold

General approach

- $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus (\bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha})$: Iwasawa decomposition
- $\mathfrak{b}\subset\mathfrak{a}\to\mathfrak{s}=\mathfrak{b}\oplus\mathfrak{n}$ Lie subalgebra of $\mathfrak{a}\oplus\mathfrak{n}$
- ullet S connected Lie subgroup of AN with Lie algebra ${\mathfrak s}$

$$S \cdot o \qquad T_o(S \cdot o) = \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n} \qquad \nu_o(S \cdot o) = \mathfrak{b}^{\perp}$$

Construction: focal submanifold

General approach

- $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus (\bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha})$: Iwasawa decomposition
- $\mathfrak{b}\subset\mathfrak{a}\to\mathfrak{s}=\mathfrak{b}\oplus\mathfrak{n}$ Lie subalgebra of $\mathfrak{a}\oplus\mathfrak{n}$, codim $\mathfrak{b}>1$
- ullet S connected Lie subgroup of AN with Lie algebra ${\mathfrak s}$

$$S \cdot o \qquad T_o(S \cdot o) = \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n} \qquad \nu_o(S \cdot o) = \mathfrak{b}^{\perp}$$

General approach

- ullet $\mathfrak{a}\oplus\mathfrak{n}=\mathfrak{a}\oplus(igoplus_{lpha\in\Sigma^+}\mathfrak{g}_lpha)$: Iwasawa decomposition
- ullet $\mathfrak{b}\subset\mathfrak{a} o\mathfrak{s}=\mathfrak{b}\oplus\mathfrak{n}$ Lie subalgebra of $\mathfrak{a}\oplus\mathfrak{n}$, codim $\mathfrak{b}>1$
- ullet S connected Lie subgroup of AN with Lie algebra ${\mathfrak s}$

$$S \cdot o$$
 $T_o(S \cdot o) = \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$ $\nu_o(S \cdot o) = \mathfrak{b}^{\perp}$

General approach

- $\mathfrak{a}\oplus\mathfrak{n}=\mathfrak{a}\oplus(igoplus_{lpha\in\Sigma^+}\mathfrak{g}_lpha)$: Iwasawa decomposition
- ullet $\mathfrak{b}\subset\mathfrak{a} o\mathfrak{s}=\mathfrak{b}\oplus\mathfrak{n}$ Lie subalgebra of $\mathfrak{a}\oplus\mathfrak{n}$, codim $\mathfrak{b}>1$
- ullet S connected Lie subgroup of AN with Lie algebra ${\mathfrak s}$

$$S \cdot o$$
 $T_o(S \cdot o) = \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$ $\nu_o(S \cdot o) = \mathfrak{b}^{\perp}$

- ∇ : Levi-Civita connection of M
- $\xi \in \mathfrak{b}^{\perp}$: unit normal vector to $S \cdot o$
- $\mathcal{A}_{\xi}X = -(\nabla_X \xi)^{\top}$: shape operator

General approach

- $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus (\bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha})$: Iwasawa decomposition
- $\mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$ Lie subalgebra of $\mathfrak{a} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$
- ullet S connected Lie subgroup of AN with Lie algebra ${\mathfrak s}$

$$S \cdot o$$
 $T_o(S \cdot o) = \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$ $\nu_o(S \cdot o) = \mathfrak{b}^{\perp}$

- ∇ : Levi-Civita connection of M
 - $\xi \in \mathfrak{b}^{\perp}$: unit normal vector to $S \cdot o$
 - $\mathcal{A}_{\xi}X = -(\nabla_X \xi)^{\top}$: shape operator

$$A_{\xi}H = 0, H \in \mathfrak{b}$$
 $A_{\xi}X_{\alpha} = \alpha(\xi)X_{\alpha}, X_{\alpha} \in \mathfrak{g}_{\alpha}, \quad \alpha \in \Sigma^{+}$

General approach

- ullet $\mathfrak{a}\oplus\mathfrak{n}=\mathfrak{a}\oplus(igoplus_{lpha\in\Sigma^+}\mathfrak{g}_lpha)$: Iwasawa decomposition
- ullet $\mathfrak{b}\subset\mathfrak{a} o\mathfrak{s}=\mathfrak{b}\oplus\mathfrak{n}$ Lie subalgebra of $\mathfrak{a}\oplus\mathfrak{n}$, codim $\mathfrak{b}>1$
- ullet S connected Lie subgroup of AN with Lie algebra ${\mathfrak s}$

$$S \cdot o \qquad T_o(S \cdot o) = \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n} \qquad \nu_o(S \cdot o) = \mathfrak{b}^\perp$$

- ∇ : Levi-Civita connection of M
 - $\xi \in \mathfrak{b}^{\perp}$: unit normal vector to $S \cdot o$
 - $\mathcal{A}_{\xi}X = -(\nabla_X \xi)^{\top}$: shape operator

$$A_{\xi}H = 0, H \in \mathfrak{b}$$
 $A_{\xi}X_{\alpha} = \alpha(\xi)X_{\alpha}, X_{\alpha} \in \mathfrak{g}_{\alpha}, \quad \alpha \in \Sigma^{+}$

$$\operatorname{tr} \mathcal{A}_{\xi} = \sum_{\alpha} \dim \mathfrak{g}_{\alpha} \alpha(\xi) =$$

General approach

- $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus (\bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha})$: Iwasawa decomposition
- ullet $\mathfrak{b}\subset\mathfrak{a} o\mathfrak{s}=\mathfrak{b}\oplus\mathfrak{n}$ Lie subalgebra of $\mathfrak{a}\oplus\mathfrak{n}$, codim $\mathfrak{b}>1$
- ullet S connected Lie subgroup of AN with Lie algebra ${\mathfrak s}$

$$S \cdot o \qquad T_o(S \cdot o) = \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n} \qquad \nu_o(S \cdot o) = \mathfrak{b}^\perp$$

Ge, Tang: Focal sets of isoparametric families are minimal

- ce, rang. recar sets or isoparametric rammes are minima
 - $\xi \in \mathfrak{b}^{\perp}$: unit normal vector to $S \cdot o$ $\lambda \mapsto H_{\lambda}, \ \lambda(H) = \langle H_{\lambda}, H \rangle$

 $\mathfrak{a}^* \rightarrow \mathfrak{a}$

• $\mathcal{A}_{\xi}X = -(\nabla_X \xi)^{\top}$: shape operator

• ∇ : Levi-Civita connection of M

$$A_{\xi}H = 0, H \in \mathfrak{b}$$
 $A_{\xi}X_{\alpha} = \alpha(\xi)X_{\alpha}, X_{\alpha} \in \mathfrak{g}_{\alpha}, \quad \alpha \in \Sigma^{+}$

 $\operatorname{tr} \mathcal{A}_{\xi} = \sum_{\Xi_{+}} \dim \mathfrak{g}_{\alpha} \alpha(\xi) =$

General approach

- $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus (\bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha})$: Iwasawa decomposition
 - $\mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$ Lie subalgebra of $\mathfrak{a} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$

$$ullet$$
 S connected Lie subgroup of AN with Lie algebra ${\mathfrak s}$

$$S \cdot o \qquad T_o(S \cdot o) = \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n} \qquad \nu_o(S \cdot o) = \mathfrak{b}^{\perp}$$

Ge, Tang: Focal sets of isoparametric families are minimal

- ∇ : Levi-Civita connection of M
 - $\xi \in \mathfrak{b}^{\perp}$: unit normal vector to $S \cdot o$ $\lambda \mapsto H_{\lambda}, \ \lambda(H) = \langle H_{\lambda}, H \rangle$

 $\mathfrak{a}^* \rightarrow \mathfrak{a}$

• $\mathcal{A}_{\xi}X = -(\nabla_X \xi)^{\top}$: shape operator

$$A_{\xi}H=0, H\in \mathfrak{b}$$
 $A_{\xi}X_{\alpha}=\alpha(\xi)X_{\alpha}, X_{\alpha}\in \mathfrak{g}_{\alpha}, \quad \alpha\in \Sigma^{+}$

$$\operatorname{tr} \mathcal{A}_{\xi} = \sum_{\alpha \in \Sigma^+} \dim \mathfrak{g}_{\alpha} \alpha(\xi) = \sum_{\alpha \in \Sigma^+} \dim \mathfrak{g}_{\alpha} \langle \mathcal{H}_{\alpha}, \xi \rangle =$$

General approach

- $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus (\bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha})$: Iwasawa decomposition
- $\mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$ Lie subalgebra of $\mathfrak{a} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$

• S connected Lie subgroup of AN with Lie algebra
$$\mathfrak s$$

$$S \cdot o \qquad T_o(S \cdot o) = \mathfrak s = \mathfrak b \oplus \mathfrak n \qquad \nu_o(S \cdot o) = \mathfrak b^\perp$$

Ge, Tang: Focal sets of isoparametric families are minimal

- - $\mathfrak{a}^* \rightarrow \mathfrak{a}$ • $\xi \in \mathfrak{b}^{\perp}$: unit normal vector to $S \cdot o$ $\lambda \mapsto H_{\lambda}, \ \lambda(H) = \langle H_{\lambda}, H \rangle$
 - $\mathcal{A}_{\xi}X = -(\nabla_X \xi)^{\top}$: shape operator

• ∇ : Levi-Civita connection of M

$$\mathcal{A}_{\xi}H=0,\ H\in\mathfrak{b}$$
 $\mathcal{A}_{\xi}X_{\alpha}=\alpha(\xi)X_{\alpha},\ X_{\alpha}\in\mathfrak{g}_{\alpha},\ \ \alpha\in\Sigma^{+}$

 $\operatorname{tr} \mathcal{A}_{\xi} = \sum \ \dim \mathfrak{g}_{\alpha} \alpha(\xi) = \sum \ \dim \mathfrak{g}_{\alpha} \langle H_{\alpha}, \xi \rangle = \langle \ \sum \ \dim \mathfrak{g}_{\alpha} H_{\alpha}, \xi \rangle$

General approach

• $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus (\bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha})$: Iwasawa decomposition

• S connected Lie subgroup of AN with Lie algebra \mathfrak{s}

• $\mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$ Lie subalgebra of $\mathfrak{a} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$

$$S \cdot o$$
 $T_o(S \cdot o) = \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$ $\nu_o(S \cdot o) = \mathfrak{b}^{\perp}$

Ge, Tang: Focal sets of isoparametric families are minimal

- - $\xi \in \mathfrak{b}^{\perp}$: unit normal vector to $S \cdot o$ $\lambda \mapsto H_{\lambda}, \ \lambda(H) = \langle H_{\lambda}, H \rangle$

 $\mathfrak{a}^* \rightarrow \mathfrak{a}$

• $\mathcal{A}_{\xi}X = -(\nabla_X \xi)^{\top}$: shape operator

• ∇ : Levi-Civita connection of M

$$\mathcal{A}_{\xi}H = 0, \ H \in \mathfrak{b} \qquad \qquad \mathcal{A}_{\xi}X_{\alpha} = \alpha(\xi)X_{\alpha}, \ X_{\alpha} \in \mathfrak{g}_{\alpha}, \quad \alpha \in \Sigma^{+}_{\mathcal{H} \in \mathfrak{a}}$$
$$\operatorname{tr} \mathcal{A}_{\xi} = \sum \dim \mathfrak{g}_{\alpha}\alpha(\xi) = \sum \dim \mathfrak{g}_{\alpha}\langle H_{\alpha}, \xi \rangle = \langle \sum \dim \mathfrak{g}_{\alpha}H_{\alpha}, \xi \rangle$$

General approach

- $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus (\bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}_{\alpha})$: Iwasawa decomposition
- $\mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$ Lie subalgebra of $\mathfrak{a} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$, $\mathcal{H} \in \mathfrak{b}$

$$S \cdot o$$
 $T_o(S \cdot o) = \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$ $\nu_o(S \cdot o) = \mathfrak{b}^{\perp}$

Ge, Tang: Focal sets of isoparametric families are minimal

• S connected Lie subgroup of AN with Lie algebra \$\sigma\$

- - $\xi \in \mathfrak{b}^{\perp}$: unit normal vector to $S \cdot o$ $\lambda \mapsto H_{\lambda}, \ \lambda(H) = \langle H_{\lambda}, H \rangle$
 - $\mathcal{A}_{\xi}X = -(\nabla_X \xi)^{\top}$: shape operator

• ∇ : Levi-Civita connection of M

$$\mathcal{A}_{\xi}H=0,\ H\in\mathfrak{b}\qquad \mathcal{A}_{\xi}X_{\alpha}=\alpha(\xi)X_{\alpha},\ X_{\alpha}\in\mathfrak{g}_{\alpha},\quad \alpha\in\underset{\mathcal{H}\in\mathfrak{a}}{\Sigma^{+}}$$

$$\operatorname{tr}\mathcal{A}_{\xi}=\sum_{\alpha}\dim\mathfrak{g}_{\alpha}\alpha(\xi)=\sum_{\alpha}\dim\mathfrak{g}_{\alpha}\langle H_{\alpha},\xi\rangle=\langle\sum_{\alpha}\dim\mathfrak{g}_{\alpha}H_{\alpha},\xi\rangle$$

General approach

- ullet $\mathfrak{a}\oplus\mathfrak{n}=\mathfrak{a}\oplus(igoplus_{lpha\in\Sigma^+}\mathfrak{g}_lpha)$: Iwasawa decomposition
- $\mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$ Lie subalgebra of $\mathfrak{a} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$, $\mathcal{H} \in \mathfrak{b}$

$$5 \cdot o \qquad T_o(S \cdot o) = \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n} \qquad \nu_o(S \cdot o) = \mathfrak{b}^\perp$$

Ge, Tang: Focal sets of isoparametric families are minimal

• S connected Lie subgroup of AN with Lie algebra \mathfrak{s}

- Ge, rang: Focal sets of isoparametric families are minima
 - $\xi \in \mathfrak{b}^{\perp}$: unit normal vector to $S \cdot o$ $\lambda \mapsto H_{\lambda}, \ \lambda(H) = \langle H_{\lambda}, H \rangle$
 - $\mathcal{A}_{\xi}X = -(\nabla_X \xi)^{\top}$: shape operator

• ∇ : Levi-Civita connection of M

$$\mathcal{A}_{\xi}H = 0, \ H \in \mathfrak{b} \qquad \mathcal{A}_{\xi}X_{\alpha} = \alpha(\xi)X_{\alpha}, \ X_{\alpha} \in \mathfrak{g}_{\alpha}, \quad \alpha \in \Sigma^{+}_{\mathcal{H} \in \mathfrak{a}}$$
$$\operatorname{tr} \mathcal{A}_{\xi} = \sum_{\alpha \in \Sigma^{+}_{+}} \dim \mathfrak{g}_{\alpha}\alpha(\xi) = \sum_{\alpha \in \Sigma^{+}_{+}} \dim \mathfrak{g}_{\alpha}\langle H_{\alpha}, \xi \rangle = \langle \sum_{\alpha \in \Sigma^{+}_{+}} \dim \mathfrak{g}_{\alpha}H_{\alpha}, \xi \rangle = 0$$

- $\mathcal{H} \in \mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$
- Tubes around $S \cdot o$, where $Lie(S) = \mathfrak{s}$

•
$$M^t = \{ \exp_p(t\xi) : p \in S \cdot o, \xi \in \nu_p^1(S \cdot o) \}$$

- $\mathcal{H} \in \mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$
- Tubes around $S \cdot o$, where $Lie(S) = \mathfrak{s}$
- $M^t = \{ \exp_p(t\xi) : p \in S \cdot o, \xi \in \nu_p^1(S \cdot o) \}$

- $\mathcal{H} \in \mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$
- Tubes around $S \cdot o$, where $Lie(S) = \mathfrak{s}$
- $\bullet \ M^t = \{ \exp_p(t\xi) : p \in S \cdot o, \, \xi \in \nu_p^1(S \cdot o) \}$

- $\mathcal{H} \in \mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$
- Tubes around $S \cdot o$, where $Lie(S) = \mathfrak{s}$
- $M^t = \{ \exp_p(t\xi) : p \in S \cdot o, \xi \in \nu_p^1(S \cdot o) \}$

- $\mathcal{H} \in \mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$
- Tubes around $S \cdot o$, where $Lie(S) = \mathfrak{s}$
- $M^t = \{ \exp_p(t\xi) : p \in S \cdot o, \xi \in \nu_p^1(S \cdot o) \}$

- $\mathcal{H} \in \mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$
- Tubes around $S \cdot o$, where $Lie(S) = \mathfrak{s}$
- $M^t = \{ \exp_p(t\xi) : p \in S \cdot o, \xi \in \nu_p^1(S \cdot o) \}$

- $\mathcal{H} \in \mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$
- Tubes around $S \cdot o$, where $Lie(S) = \mathfrak{s}$
- $\bullet \ M^t = \{ \exp_p(t\xi) \, : \, p \in S \cdot o, \, \xi \in \nu_p^1(S \cdot o) \}$

- $\mathcal{H} \in \mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$
- Tubes around $S \cdot o$, where $Lie(S) = \mathfrak{s}$
- $M^t = \{ \exp_p(t\xi) : p \in S \cdot o, \xi \in \nu_p^1(S \cdot o) \}$

- $\mathcal{H} \in \mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$
- Tubes around $S \cdot o$, where $Lie(S) = \mathfrak{s}$
- $M^t = \{ \exp_p(t\xi) : p \in S \cdot o, \xi \in \nu_p^1(S \cdot o) \}$

- $\mathcal{H} \in \mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$
- Tubes around $S \cdot o$, where $Lie(S) = \mathfrak{s}$
- $\bullet \ M^t = \{ \exp_p(t\xi) : p \in S \cdot o, \, \xi \in \nu_p^1(S \cdot o) \}$

- γ : geodesic defined by $\gamma(0) = o$, $\dot{\gamma}(0) = \xi$
- $X \in T_o(S \cdot o) \oplus (\nu_o(S \cdot o) \ominus \mathbb{R}\xi) \Rightarrow J_X$ Jacobi vector field

- $\mathcal{H} \in \mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$
- Tubes around $S \cdot o$, where $Lie(S) = \mathfrak{s}$
- $\bullet \ M^t = \{ \exp_p(t\xi) \, : \, p \in S \cdot o, \, \xi \in \nu^1_p(S \cdot o) \}$

- γ : geodesic defined by $\gamma(0) = o$, $\dot{\gamma}(0) = \xi$
- $X \in T_o(S \cdot o) \oplus (\nu_o(S \cdot o) \ominus \mathbb{R}\xi) \Rightarrow J_X$ Jacobi vector field

$$T_p M^t = \operatorname{span}\{J_X(t)\}_X$$

Adapted Jacobi vector fields

Jacobi equation:

$$J_X'' + R(J_X, \dot{\gamma})\dot{\gamma} = 0$$

• Initial conditions:

$$J_X(0) = X^{\top}$$

$$J_X'(0) = X^{\perp} - \mathcal{A}_{\xi}X^{\top}$$

- $\mathcal{H} \in \mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, codim $\mathfrak{b} > 1$
- Tubes around $S \cdot o$, where $Lie(S) = \mathfrak{s}$
- $\bullet \ M^t = \{ \exp_p(t\xi) \, : \, p \in S \cdot o, \, \xi \in \nu_p^1(S \cdot o) \}$

- γ : geodesic defined by $\gamma(0) = o$, $\dot{\gamma}(0) = \xi$
- $X \in T_o(S \cdot o) \oplus (\nu_o(S \cdot o) \ominus \mathbb{R}\xi) \Rightarrow J_X$ Jacobi vector field

$$T_p M^t = \operatorname{span}\{J_X(t)\}_X$$
 $\mathcal{A}_{\dot{\gamma}(t)}^t J_X(t) = -J_X'(t)$

Adapted Jacobi vector fields

Jacobi equation:

$$J_X''+R(J_X,\dot{\gamma})\dot{\gamma}=0$$

• Initial conditions:

$$J_X(0) = X^{ op}$$

$$J_X'(0) = X^{\perp} - \mathcal{A}_{\xi}X^{\top}$$

Jacobi vector fields

- $J_X(0) = X^{\top}, J'_X(0) = X^{\perp} A_{\varepsilon}X^{\top}$
 - $T_pM^t = \operatorname{span}\{J_X(t)\}_X$ $\bullet \ \mathcal{A}_{\dot{\gamma}(t)}^t J_X(t) = -J_X'(t)$

Isoparametric :⇔ Equidistant hypersurfaces of constant mean curvature

$$T_o(S \cdot o) = \mathfrak{b} \oplus \mathfrak{n}$$

$$\mathsf{tr}\,\mathcal{A}^t =$$

Jacobi vector fields

- $J_X(0) = X^{\top}, J_X'(0) = X^{\perp} A_{\xi}X^{\top}$
 - $T_p M^t = \operatorname{span} \{J_X(t)\}_X$ • $\mathcal{A}_{\hat{\gamma}(t)}^t J_X(t) = -J_X'(t)$

Isoparametric : Equidistant hypersurfaces of constant mean curvature

•
$$J_H(t) = P_H(t), H \in \mathfrak{b}$$

$$T_o(S \cdot o) = \mathfrak{b} \oplus \mathfrak{n}$$

$$\operatorname{\mathsf{tr}} A^t =$$

Jacobi vector fields

- $J_X(0) = X^{\top}, J_X'(0) = X^{\perp} A_{\xi}X^{\top}$
 - $\bullet \ \mathcal{A}_{\dot{\gamma}(t)}^t J_X(t) = -J_X'(t)$

• $T_p M^t = \operatorname{span} \{J_X(t)\}_X$

Isoparametric : Equidistant hypersurfaces of constant mean curvature

•
$$J_H(t) = P_H(t), H \in \mathfrak{b}$$

$$T_o(S \cdot o) = \mathfrak{b} \oplus \mathfrak{n}$$

$$\operatorname{\mathsf{tr}} \mathcal{A}^t = 0$$

Jacobi vector fields

- $J_X(0) = X^{\top}, J_X'(0) = X^{\perp} A_{\xi}X^{\top}$
 - $T_p M^t = \operatorname{span}\{J_X(t)\}_X$ • $\mathcal{A}^t_{\gamma(t)}J_X(t) = -J'_X(t)$

Isoparametric : Equidistant hypersurfaces of constant mean curvature

•
$$J_H(t) = P_H(t), \quad H \in \mathfrak{b}$$

•
$$J_{X_{\alpha}}(t) = e^{-t\alpha(\xi)} P_{X_{\alpha}}(t), \quad X_{\alpha} \in \mathfrak{g}_{\alpha} \subset \mathfrak{n}$$
 $T_{o}(S \cdot o) = \mathfrak{b} \oplus \mathfrak{n}$

$$\operatorname{\mathsf{tr}} \mathcal{A}^t = 0$$

Jacobi vector fields

- $J_X(0) = X^{\top}, J'_X(0) = X^{\perp} A_{\varepsilon}X^{\top}$ • $T_n M^t = \operatorname{span} \{J_X(t)\}_X$
- $\mathcal{A}_{\dot{\gamma}(t)}^t J_X(t) = -J_X'(t)$

 $T_{o}(S \cdot o) = \mathfrak{b} \oplus \mathfrak{n}$

Isoparametric :⇔ Equidistant hypersurfaces of constant mean curvature

- $J_H(t) = P_H(t), H \in \mathfrak{b}$
- $J_{X_{\alpha}}(t) = e^{-t\alpha(\xi)} P_{X_{\alpha}}(t), X_{\alpha} \in \mathfrak{g}_{\alpha} \subset \mathfrak{n}$

Mean curvature of
$$M^t$$
:

$$\operatorname{\mathsf{tr}} \mathcal{A}^t = 0 + \sum_{lpha \in \Sigma^+} \dim \mathfrak{g}_lpha lpha(\xi)$$

Jacobi vector fields

- $J_X(0) = X^{\top}, J_X'(0) = X^{\perp} A_{\xi}X^{\top}$ • $T_pM^t = \text{span}\{J_X(t)\}_X$
- $\mathcal{A}_{\dot{\gamma}(t)}^t J_X(t) = -J_X'(t)$

 $T_{o}(S \cdot o) = \mathfrak{b} \oplus \mathfrak{n}$

Isoparametric : Equidistant hypersurfaces of constant mean curvature

•
$$J_H(t) = P_H(t), \quad H \in \mathfrak{b}$$

•
$$J_{X_{\alpha}}(t) = e^{-t\alpha(\xi)} P_{X_{\alpha}}(t), \quad X_{\alpha} \in \mathfrak{g}_{\alpha} \subset \mathfrak{n}$$

$$ullet \ J_\eta(t)=tP_\eta(t), \ \ \eta\in
u_o(S\cdot o)\ominus\mathbb{R} \xi$$

Mean curvature of
$$M^t$$
:

$$\operatorname{\mathsf{tr}} \mathcal{A}^t = 0 + \sum_{lpha \in \mathbf{\Sigma}^+} \operatorname{\mathsf{dim}} \mathfrak{g}_lpha lpha(\xi)$$

Jacobi vector fields

- $J_X(0) = X^{\top}, J'_Y(0) = X^{\perp} A_{\varepsilon}X^{\top}$ • $T_p M^t = \operatorname{span} \{J_X(t)\}_X$
 - $\mathcal{A}_{\dot{\gamma}(t)}^t J_X(t) = -J_X'(t)$

Isoparametric :⇔ Equidistant hypersurfaces of constant mean curvature

•
$$J_H(t) = P_H(t), H \in \mathfrak{b}$$

•
$$J_H(t) = P_H(t), H \in \mathfrak{v}$$

• $J_{X_\alpha}(t) = e^{-t\alpha(\xi)} P_{X_\alpha}(t), X_\alpha \in \mathfrak{g}_\alpha \subset \mathfrak{n}$

•
$$J_n(t) = tP_n(t), \quad \eta \in \nu_o(S \cdot o) \ominus \mathbb{R}\xi$$

 $\alpha \in \Sigma^+$

tr
$$\mathcal{A}^t=0+\sum_{}$$
 dim $\mathfrak{g}_{lpha}lpha(\xi)-rac{1}{t}(\dim\mathfrak{b}^\perp-1)$

Jacobi vector fields

- $J_X(0) = X^{\top}, J'_Y(0) = X^{\perp} A_{\varepsilon}X^{\top}$ • $T_{D}M^{t} = \operatorname{span}\{J_{X}(t)\}_{X}$
- $\mathcal{A}_{\dot{\gamma}(t)}^t J_X(t) = -J_X'(t)$

 $T_{o}(S \cdot o) = \mathfrak{b} \oplus \mathfrak{n}$

Isoparametric :⇔ Equidistant hypersurfaces of constant mean curvature

•
$$J_H(t) = P_H(t), H \in \mathfrak{b}$$

- $J_{X_{\alpha}}(t) = e^{-t\alpha(\xi)} P_{X_{\alpha}}(t), X_{\alpha} \in \mathfrak{g}_{\alpha} \subset \mathfrak{n}$
- $J_n(t) = tP_n(t), \quad \eta \in \nu_o(S \cdot o) \ominus \mathbb{R}\xi$

$$ullet J_\eta(t)=tP_\eta(t), \ \ \eta\in
u_o(S\cdot o)\ominus\mathbb{R}$$

$$\operatorname{\mathsf{tr}} \mathcal{A}^t = 0 + \sum_{} \operatorname{\mathsf{dim}} \mathfrak{g}_{lpha} lpha(\xi) - rac{1}{t} (\operatorname{\mathsf{dim}} \mathfrak{b}^\perp - 1)$$

Jacobi vector fields

- $J_X(0) = X^{\top}, J'_Y(0) = X^{\perp} A_{\varepsilon}X^{\top}$
 - $T_n M^t = \operatorname{span} \{J_X(t)\}_X$ • $\mathcal{A}_{\dot{\gamma}(t)}^t J_X(t) = -J_X'(t)$

 $T_o(S \cdot o) = \mathfrak{b} \oplus \mathfrak{n}$

Isoparametric : Equidistant hypersurfaces of constant mean curvature

•
$$J_H(t) = P_H(t), H \in \mathfrak{b}$$

•
$$J_{X_{\alpha}}(t) = e^{-t\alpha(\xi)} P_{X_{\alpha}}(t), \quad X_{\alpha} \in \mathfrak{g}_{\alpha} \subset \mathfrak{n}$$

$$ullet J_{\eta}(t)=tP_{\eta}(t), \quad \eta \in
u_o(S\cdot o)\ominus \mathbb{R} \xi$$

Mean curvature of
$$M^t$$
:

$$\operatorname{\mathsf{tr}} \mathcal{A}^t = 0 + \langle \mathcal{H}, \xi
angle - rac{1}{t} (\operatorname{\mathsf{dim}} \mathfrak{b}^\perp - 1)$$

Jacobi vector fields

- $\bullet \ J_X(0) = X^{ op}, \ J_X'(0) = X^{\perp} \mathcal{A}_{\xi}X^{ op}$
- $T_pM^t = \operatorname{span}\{J_X(t)\}_X$ • $\mathcal{A}_{\hat{S}(t)}^tJ_X(t) = -J_X'(t)$

 $T_o(S \cdot o) = \mathfrak{b} \oplus \mathfrak{n}$

Isoparametric :⇔ Equidistant hypersurfaces of constant mean curvature

•
$$J_H(t) = P_H(t), H \in \mathfrak{b}$$

•
$$J_{X_{\alpha}}(t) = e^{-t\alpha(\xi)} P_{X_{\alpha}}(t), \quad X_{\alpha} \in \mathfrak{g}_{\alpha} \subset \mathfrak{n}$$

$$ullet J_\eta(t)=tP_\eta(t), \ \ \eta\in
u_o(S\cdot o)\ominus\mathbb{R} \xi$$

$$\operatorname{\mathsf{tr}} \mathcal{A}^t = 0 + \langle \mathcal{H}, \xi
angle - rac{1}{t} (\operatorname{\mathsf{dim}} \mathfrak{b}^\perp - 1) = -rac{1}{t} (\operatorname{\mathsf{dim}} \mathfrak{b}^\perp - 1)$$

About the examples

- Isoparametric hypersurfaces in any G/K of rank ≥ 3 $\sqrt{\text{Done}}$
- Inhomogeneous, non-constant p. c., non-austere focal submanifold

Ge, Tang: Isoparametric hyp. with constant principal curvatures \Rightarrow CPC focal submanifold

About the examples

- Isoparametric hypersurfaces in any G/K of rank ≥ 3 $\sqrt{\text{Done}}$
- Inhomogeneous, non-constant p. c., non-austere focal submanifold

Ge, Tang: Isoparametric hyp. with constant principal curvatures \Rightarrow CPC focal submanifold

- $\mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, $\mathcal{H} \in \mathfrak{b}$, codim $\mathfrak{b} \geq 2$
- ullet Principal curvatures of $S \cdot o$ with respect to $\xi \in \mathfrak{b}^{\perp}$:

$$\{0\} \cup \{\alpha(\xi) : \alpha \in \Sigma^+\}$$

Interpret each $\alpha \in \Sigma^+$ as a linear functional on \mathfrak{b}^{\perp} . Hence:

About the examples

- Isoparametric hypersurfaces in any G/K of rank ≥ 3 $\sqrt{\text{Done}}$
- Inhomogeneous, non-constant p. c., non-austere focal submanifold

Ge, Tang: Isoparametric hyp. with constant principal curvatures \Rightarrow CPC focal submanifold

- $\mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, $\mathcal{H} \in \mathfrak{b}$, codim $\mathfrak{b} \geq 2$
- Principal curvatures of $S \cdot o$ with respect to $\xi \in \mathfrak{b}^{\perp}$:

$$\{0\} \cup \{\alpha(\xi) : \alpha \in \Sigma^+\}$$

Interpret each $\alpha \in \Sigma^+$ as a linear functional on \mathfrak{b}^{\perp} . Hence:

$$S \cdot o$$
 austere $\Leftrightarrow \exists$ permutation σ such that $\lambda + \sigma(\lambda)|_{\mathfrak{b}^{\perp}} = 0$ for all $\lambda \in \Sigma^+$ \exists permutation σ such that $H_{\lambda + \sigma(\lambda)} \in \mathfrak{b}$ for all $\lambda \in \Sigma^+$

About the examples

- Isoparametric hypersurfaces in any G/K of rank ≥ 3 $\sqrt{\text{Done}}$
- Inhomogeneous, non-constant p. c., non-austere focal submanifold

Ge, Tang: Isoparametric hyp. with constant principal curvatures \Rightarrow CPC focal submanifold

- $\mathfrak{b} \subset \mathfrak{a} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n}$, $\mathcal{H} \in \mathfrak{b}$, codim $\mathfrak{b} \geq 2$
- Principal curvatures of $S \cdot o$ with respect to $\xi \in \mathfrak{b}^{\perp}$:

$$\{0\} \cup \{\alpha(\xi) : \alpha \in \Sigma^+\}$$

Interpret each $\alpha \in \Sigma^+$ as a linear functional on \mathfrak{b}^{\perp} . Hence:

$$S\cdot o$$
 austere $\Leftrightarrow \exists$ permutation σ such that $\lambda+\sigma(\lambda)|_{\mathfrak{b}^{\perp}}=0$ for all $\lambda\in\Sigma^+$ \exists permutation σ such that $H_{\lambda+\sigma(\lambda)}\in\mathfrak{b}$ for all $\lambda\in\Sigma^+$

 α such that any member of $\{H_{\alpha+\lambda}:\lambda\in\Sigma^+\}$ is not collinear to \mathcal{H}

Polar action

An isometric action on M is said to be polar if there is a submanifold Σ (section) that intersects all orbits orthogonally

Theorem (Domínguez-Vázquez, 2015)

M Riemannian manifold, $S \subset I^0(M)$, $S \circlearrowright M$

ullet The action is polar with section Σ , free and with minimal orbits

If $P \subset \Sigma$ is isoparametric in Σ , then $S \cdot P$ is isoparametric in M

$$S \cdot P = \{h(p) : h \in S, p \in P\}$$

Polar action

An isometric action on M is said to be polar if there is a submanifold Σ (section) that intersects all orbits orthogonally

Theorem (Domínguez-Vázquez, 2015)

M Riemannian manifold, $S \subset I^0(M)$, $S \circlearrowright M$

• The action is polar with section Σ , free and with minimal orbits

If $P \subset \Sigma$ is isoparametric in Σ , then $S \cdot P$ is isoparametric in M

$$S \cdot P = \{h(p) : h \in S, p \in P\}$$

Polar action

An isometric action on M is said to be polar if there is a submanifold Σ (section) that intersects all orbits orthogonally

Theorem (Domínguez-Vázquez, 2015)

M Riemannian manifold, $S \subset I^0(M)$, $S \supset M$

• The action is polar with section Σ , free and with minimal orbits

If $P\subset \Sigma$ is isoparametric in Σ , then $S\cdot P$ is isoparametric in M

$$S \cdot P = \{h(p) : h \in S, p \in P\}$$

Polar action

An isometric action on M is said to be polar if there is a submanifold Σ (section) that intersects all orbits orthogonally

Theorem (Domínguez-Vázquez, 2015)

M Riemannian manifold, $S \subset I^0(M)$, $S \supset M$

• The action is polar with section Σ , free and with minimal orbits

If $P \subset \Sigma$ is isoparametric in Σ , then $S \cdot P$ is isoparametric in M

$$S \cdot P = \{h(p) : h \in S, p \in P\}$$

$$\mathfrak{b} \subset \mathfrak{a}$$
, codim $\mathfrak{b} > 1$, $\mathcal{H} \in \mathfrak{b} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n} \rightarrowtail S \circlearrowleft M$

Polar action

An isometric action on M is said to be polar if there is a submanifold Σ (section) that intersects all orbits orthogonally

Theorem (Domínguez-Vázquez, 2015)

M Riemannian manifold, $S \subset I^0(M)$, $S \circlearrowleft M$

• The action is polar with section \mathbb{R}^n , free and with minimal orbits

If
$$P \subset \mathbb{R}^n$$
 is isoparametric in \mathbb{R}^n , then $S \cdot P$ is isoparametric in M

$$S \cdot P = \{h(p) : h \in S, p \in P\}$$

$$\mathfrak{b} \subset \mathfrak{a}$$
, codim $\mathfrak{b} > 1$, $\mathcal{H} \in \mathfrak{b} \to \mathfrak{s} = \mathfrak{b} \oplus \mathfrak{n} \rightarrowtail S \circlearrowleft M$

Polar action

An isometric action on M is said to be polar if there is a submanifold Σ (section) that intersects all orbits orthogonally

Polar action

An isometric action on M is said to be polar if there is a submanifold Σ (section) that intersects all orbits orthogonally

Main Theorem

Theorem

Let M be a symmetric space of non-compact type and rank ≥ 3 . Let S be the connected Lie subgroup of AN with Lie algebra $\mathfrak{s}=\mathfrak{b}\oplus\mathfrak{n}$, where \mathfrak{b} is any subspace of codimension at least two of \mathfrak{a} such that $\mathcal{H}\in\mathfrak{b}$. Then:

- The orbit $S \cdot o$ is a minimal submanifold. It is non-austere for a generic choice of $\mathfrak b$ as above, or if dim $\mathfrak b = 1$
- \bullet The distance tubes around $S\cdot o$ define an inhomogeneous isoparametric family of hypersurfaces with non-constant principal curvatures on M
- There are infinitely many non-congruent examples
- M. Domínguez-Vázquez, V. Sanmartín-López: Isoparametric hypersurfaces in symmetric spaces of non-compact type and higher rank. *Compos. Math.* **160** (2024), no. 2, 451–462.