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A hypersurface is said to be isoparametric :< it and its nearby
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@ Homogeneous hypersurface = Isoparametric hypersurface
@ M C M homogeneous 1<+ M = G - p for some G C I(M) , pc M

e G ) M cohomogeneity one action = Isoparametric family
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@ R" (Segre, 1939): Homogeneous <> Isoparametric

v O

e RH" (Cartan, 1939): Homogeneous < Isoparametric

& P

e S™: Principal curvatures = {1,2,3,4,6}
@ Inhomogeneous isoparametric hypersurfaces (Ferus, Karcher, Miinzner)
@ Isoparametric hypersurfaces are homogeneous or FKM
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Theorem (Ge, Tang, 2012)

@ Focal submanifolds of isoparametric families are minimal

@ Isoparametric + constant principal curvatures = principal curvatures
of the focal submanifold independent on the normal <: CPC

Totally geodesic C CPC C Austere C Minimal
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Theorem (Ge, Tang, 2012)

@ Focal submanifolds of isoparametric families are minimal

@ Isoparametric + constant principal curvatures = principal curvatures
of the focal submanifold independent on the normal <: CPC

Totally geodesic C CPC C Austere C Minimal

Austere :& Principal curvatures invariant under change of sign )

Theorem (Berndt, -, 2018)

@ Family of homogeneous non totally geodesic CPC submanifolds
Objectives:
@ Understand better cohomogeneity one actions

@ Produce new examples of isoparametric hypersurfaces

All the known examples: tubes around an austere focal submanifold
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@ All the known examples: tubes around an austere focal submanifold
o Classification in complete Riemannian families: RH", CH"
@ Inhomogeneous examples only in CH", HH", OH? and “extensions”

Main Theorem

Each symmetric space of non-compact type and rank > 3 admits
inhomogeneous isoparametric families of hypersurfaces with non-constant
principal curvatures around a non-austere focal submanifold (infinitely
many non-congruent if rank > 4)

@ First examples with non-austere focal submanifold

e Existence in any symmetric space of rank > 3

o Inhomogeneous example in RH? x RH? x RH?
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Symmetric spaces of non-compact type

M = G/K symmetric space of non-compact type
o G=I%(M) @ K: isotropy group of o € M J

g =t @ p Cartan decomposition

Inner product in g: (X, Y) = —B(0X,Y), B Killing form

a C p maximal abelian subspace, dima = rank M

{ad(H) : H € a} self-adjoint commutative endomorphisms
g=90D (®a62 ga) root space decomposition

gy ={Xeg:[AX]=XNA)X, forall Aca}, X € a*
Y={\ea* : g\#0}\{0} set of roots ~ L =Xt UX"

Iwasawa decomposition
AN _
o ng@m o n=P,c5+ Ja nilpotent

M = AN solvable Lie group with left invariant metric )
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Jacobi vector fields ’ Mt
o Jx(0) = XT, Ji(0) = Xt — AXT \
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About the examples

@ Isoparametric hypersurfaces in any G/K of rank > 3 v'Done

@ Inhomogeneous, non-constant p. c., non-austere focal submanifold

Ge, Tang: Isoparametric hyp. with constant principal curvatures = CPC
focal submanifold

ebCa—s=0bdn Heb, codimb > 2

o Principal curvatures of S - o with respect to & € b:
{0} U{a(e) : a e T}

Interpret each a € ¥ as a linear functional on b*. Hence:

S - oaustere < Jpermutation o such that A + o(\)],. = Ofor all A € &
dpermutation o such that Hy  ;(») € bfor all A € rt

« such that any member of {H, ) : A € ¥} is not collinear to H



Description of the examples

Polar action

An isometric action on M is said to be polar if there is a submanifold X
(section) that intersects all orbits orthogonally
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Theorem (Dominguez-Vazquez, 2015)

M Riemannian manifold, S € I°(M), S O M
@ The action is polar with section X, free and with minimal orbits

If P C X is isoparametric in X, then S - P is isoparametric in M
S-P={h(p) : he S,pe P}
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Polar action

An isometric action on M is said to be polar if there is a submanifold X
(section) that intersects all orbits orthogonally
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Theorem (Dominguez-Vazquez, 2015)

M Riemannian manifold, S € I°(M), S O M
@ The action is polar with section R", free and with minimal orbits
If P C R" is isoparametric in R”, then S - P is isoparametric in M
S-P={h(p) : he S,pe P}
bCa codmb>1 Heb—>s=bdn—-SOM
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Main Theorem

Let M be a symmetric space of non-compact type and rank > 3. Let S be
the connected Lie subgroup of AN with Lie algebra s = b & n, where b is
any subspace of codimension at least two of a such that H € b. Then:

@ The orbit S - 0 is a minimal submanifold. It is non-austere for a
generic choice of b as above, or if dimb =1

@ The distance tubes around S - o define an inhomogeneous
isoparametric family of hypersurfaces with non-constant principal
curvatures on M

@ There are infinitely many non-congruent examples

[ M. Dominguez-Vazquez, V. Sanmartin-Lépez: Isoparametric
hypersurfaces in symmetric spaces of non-compact type and higher
rank. Compos. Math. 160 (2024), no. 2, 451-462.




