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Overveiw

I Solution space to (time-dependant) ODE system: Yang-Mills instanton
equation on co-homogeniety one G2-manifold, gauge group SU(2).
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(AC) limits.
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Invariant Instantons on Taub-NUT

I Taub-NUT: for η ∈ (m−2,∞), e i dual to vector fields Ei of SO(3) on S3:

g = η
(
η − 1

m2

)−4
dη2 + η

(
η − 1

m2

)−2
[(

e1
)2

+
(
e2
)2]

+ η−1
(
e3
)2

defines a hyperKahler metric on R4 asymptotic to a circle fibration over R3

with a fibres of length m (ALF).

I Yang-Mills Instantons: for parameters C ,D ≥ 0, SU(2)-invariant
solutions of FA = − ∗ FA:

A = C
η−m−2 csch

(
C

η−m−2 + D
) [

E1e
1 + E2e

2
]

+ 1
η

(
m−2 + C coth

(
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η−m−2 + D
))

E3e
3
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I Asymptotic to abelian solution 1
η

(
m−2 + C

)
E3e

3: Dirac monopole on

R3. Also (rigid) solutions for C < 0.

I Fix B = sinh(D)/C and let C → 0, D → 0:

A = 1
1+B(η−m−2)

[
E1e

1 + E2e
2
]

+ 1
η

(
m−2 + (η−m−2)

1+B(η−m−2)

)
E3e

3

Asymptotic to flat Maurier-Cartan connection E1e
1 + E2e

2 + E3e
3

I Euclidian limit m→∞. A→ ABPS

ABPS = 1
1+Bη2

[
E1e

1 + E2e
2 + E3e

3
]
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B7-family

I Given the data of four functions (A1,A3,B1,B3) : R>0 → R4
>0 solving:

Ȧ1 =
1

2

(
B2

1 + B2
3 − A2

1

B1B3
− A3

A1

)
,

Ȧ3 =
1

2

(
A2

3

A2
1

− A2
3

B2
1

)
,

Ḃ1 =
1

2

(
A2

1 + B2
3 − B2

1

A1B3
+

A3

B1

)
,

Ḃ3 =
A2

1 + B2
1 − B2

3

A1B1
.

I We can construct an SU(2)2-invariant metric with holonomy G2 on
R>0 × S3 × S3, w. basis of left-invariant one-forms ei , e

′
i ∈ su∗(2) by

g = dt2 + A2
i

(
3∑

i=1

(
ei + e′i

)2)
+ B2

i

(
3∑

i=1

(
ei − e′i

)2)
(1)

where A1 = A2, B1 = B2.
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Ȧ3 =
1

2

(
A2

3

A2
1

− A2
3

B2
1

)
,
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B7-family

I 2-parameter family (r0, `) of solutions that are smooth over S3 ⊂ S3 ×R4

at t = 0.

I r0 is fixed by overall scale, ` controls asymptotic behaviour (r0 fixed).

I (A1,A3,B1,B3) ∼
(√

3
3
t, `,

√
3
3
t, 2

3
t
)

as t →∞.

I g ∼ dt2 + t2g5 + `2 (e3 + e′3)
2
.

I dt2 + t2g5 is Calabi-Yau cone metric on conifold
{(z1, z2, z3, z4) ∈ C4 |

∑
i z

2
i = 0}.
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B7-family

I g ∼ dt2 + t2g5 + `2 (e3 + e′3)
2
.

I Asymptotically locally conical (ALC): tangent cone at infinity is 1d less.
Volume of ball Vol(Bt) = O(t6).

I Rescaling sλ2 : t 7→ λ2t, s∗λ2g ∼ λ4
(
gTN ⊕ λ−2ground

)
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G2-instantons

I Given the data of two functions (F1,F3) : R>0 → R2
>0 solving:

Ḟ1 =
F1

A3

(
1− A1A3

B1B3
− F3

)
,

Ḟ3 =
A3

A2
1

((
1− A2

1

B2
1

)
F3 − F 2

1

)
,

I We can construct an SU(2)2-invariant Yang-Mills (G2) instanton
D∗AFA = 0 on R>0 × S3 × S3 by

A =

(
3∑

i=1

FiE
i ⊗
(
ei + e′i

))

where F1 = F2, E i := (ei )
∗ ∈ su(2).
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Ḟ1 =
F1

A3

(
1− A1A3

B1B3
− F3

)
,
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Space of solutions for fixed `

Solutions closing on S3 in a two-parameter family:

F1 = F̄1t
2 + O(t4) F3 = F̄3t

2 + O(t4)

`−2
F̄3

F̄1

F3 (∞) = 1

Incomplete

Complete

Theorem
(S.-Turner) The above picture describes the region of initial conditions that
lead to complete bounded solutions.



Strategy Of Proof

I Extend incompleteness results of Lotay-Oliveria.

I Parameterise solutions at infinity using theory of irregular singular initial
value problems of the form:

ẋ = t−2M−2x + t−1M−1x + M (x, t) [M−2,M−1] = 0

I Show that for asmyptotic monopole mass F3 (∞) > 1, can deform
abelian solution F1 = 0 in a complete two-parameter family.

I Use with comparison results: construct closure of complete solution set
using deformed abelian solutions.
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Asymptotically Conical (AC) limit

I B7-family of G2-metrics g` (fixed scale) on S3 × R4. Setting ` =∞ gives
Bryant-Salamon G2-manifold.

I (A1,A3,B1,B3) ∼
(√

3
3
t, 2

3
t,
√
3

3
t, 2

3
t
)

as t →∞.

I g ∼ dt2 + t2g6, G2-cone metric.
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Asymptotically Conical (AC) limit

`−2
F̄3

F̄1

F3 (∞) = 1

Incomplete

Complete

I Curve F3 (∞) = 1 (*) converging to Clarke solution F1 = F3 on
Bryant-Salamon.



ALF-fibration

I Two-parameters (r0, `) define functions (A1,A3,B1,B3).

I Adiabatic limit: pulling back metric by a diffeomorphism sλ2 : t 7→ λ2t
and rescaling.

I Let Aλi (t) := λ−2Ai (λ
2t),Bλi (t) := λ−1Bi (λ

2t). Then:

s∗λ2g = λ4

(
dt2 +

(
Aλi

)2( 3∑
i=1

(
ei + e′i

)2)
+ λ−2

(
Bλi

)2( 3∑
i=1

(
ei − e′i

)2))
I Let λ = r0 → 0, then

Bλi → 2 Aλ1 → r
1
2
(
r − 1

`2

)−1
Aλ3 → r−

1
2

where ṙ = −r−
1
2
(
r − 1

`2

)2
giving the Taub-NUT metric on the fibre R4.

I s∗λ2g ∼ λ4
(
gTN ⊕ λ−2ground

)
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where ṙ = −r−
1
2
(
r − 1

`2

)2
giving the Taub-NUT metric on the fibre R4.

I s∗λ2g ∼ λ4
(
gTN ⊕ λ−2ground

)



ALF-fibration

I Two-parameters (r0, `) define functions (A1,A3,B1,B3).

I Adiabatic limit: pulling back metric by a diffeomorphism sλ2 : t 7→ λ2t
and rescaling.

I Let Aλi (t) := λ−2Ai (λ
2t),Bλi (t) := λ−1Bi (λ

2t). Then:

s∗λ2g = λ4

(
dt2 +

(
Aλi

)2( 3∑
i=1

(
ei + e′i

)2)
+ λ−2

(
Bλi

)2( 3∑
i=1

(
ei − e′i

)2))
I Let λ = r0 → 0, then

Bλi → 2 Aλ1 → r
1
2
(
r − 1

`2

)−1
Aλ3 → r−

1
2

where ṙ = −r−
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ALF-fibration

Theorem
(S.-Turner) There is a function F̄i (r0)→∞, λ→ 0, such that s∗λ2A in the limit
λ = r0 → 0 gives a two parameter family of instantons on Taub-NUT fibred
over S3, one for each fixed F̄i r

4
0 .

I Moduli of invariant instantons on Taub-NUT is given by the same picture
as for B7.

I Moduli of instantons on Taub-NUT is hyperkahler mfld (Cherkis et al.),
in particular should be more instantons than the invariant ones we have
found.
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in particular should be more instantons than the invariant ones we have
found.
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I Parametrised solutions to ODE system, geometric explination in terms of
deforming abelian instantons on conifold.

I Understood limiting behaviour of this solution space, using the two
geometric limits (AC, ALF-fibration)

I Suggestion for behaviour outside of the invariant setting

Thank You For Listening!



Summary

I Parametrised solutions to ODE system, geometric explination in terms of
deforming abelian instantons on conifold.

I Understood limiting behaviour of this solution space, using the two
geometric limits (AC, ALF-fibration)

I Suggestion for behaviour outside of the invariant setting

Thank You For Listening!



Summary

I Parametrised solutions to ODE system, geometric explination in terms of
deforming abelian instantons on conifold.

I Understood limiting behaviour of this solution space, using the two
geometric limits (AC, ALF-fibration)

I Suggestion for behaviour outside of the invariant setting

Thank You For Listening!



Summary

I Parametrised solutions to ODE system, geometric explination in terms of
deforming abelian instantons on conifold.

I Understood limiting behaviour of this solution space, using the two
geometric limits (AC, ALF-fibration)

I Suggestion for behaviour outside of the invariant setting

Thank You For Listening!


