Complete G_2 -solitons

Johannes Nordström University of Bath

10 June 2024

Joint work with Mark Haskins and Rowan Juneman

These slides available at <http://people.bath.ac.uk/jlpn20/g2sol3.pdf>

Introduction

Context: Riemannian 7-manifolds with holonomy group G_2 , a special kind of Ricci-flat manifolds

Bryant's Laplacian flow: a cousin of Ricci flow for closed G_2 -structures $G₂$ solitons: self-similar solutions to Laplacian flow, equivalent to positive 3-form $\varphi\in\Omega^3(M^7)$, vector field X , constant $\lambda\in\mathbb{R}$ satisfying

$$
d\varphi = 0, \quad \Delta_{\varphi}\varphi = \lambda\varphi + \mathcal{L}_X\varphi.
$$

We have found asymptotically conical $G₂$ solitons of cohomogeneity one on $\Lambda^2_- \mathbb{C}P^2$ and $\Lambda^2_- S^4$, of all three types (shrinker, expander and steady), as well as complete solitons with different end behaviours.

Outline

- 1. Main results
- 2. Holonomy G_2 and Laplacian flow
- 3. Invariant soliton ODE and singular initial value problem
- 4. Forward-completeness
- 5. Twistor bundle perspective and rescaling limits of ODEs

1. Main results **Invariant** G_2 -structures on $\Lambda^2 \leq S^4$ and $\Lambda^2 \leq P^2$

 $Sp(2)$ -invariant G_2 -structures φ on $\Lambda^2_- S^4 \setminus$ zero section $\cong \mathbb{R}_{>0} \times \mathbb{C} P^3$ $\leftarrow f_1, f_2 : \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ \leftrightarrow scale of base and S^2 fibres of $\mathbb{C}P^3 \to S^4$.

 $SU(3)$ -invariant G_2 -structures on $\Lambda^2_- \mathbb{C}P^2 \setminus$ zero $\text{section} \cong \mathbb{R}_{>0} \times SU(3)/T^2$ \leftarrow f₁, f₂, f₃ : $\mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ \leftrightarrow scale of \mathcal{S}^2 fibres of three different fibrations $SU(3)/\mathit{T}^2 \to \mathbb{C}P^2.$

 $f_2 = f_3 \Leftrightarrow$ multiplication by -1 on fibres of $\Lambda^2_-\mathbb{C}P^2$ is isometry. ODEs identical for $SU(3) \times \mathbb{Z}_2$ -invariant and $Sp(2)$ -invariant solitons (indeed, same ODE appears on $\Lambda^2_- X$ for any positive Einstein self-dual $X)$.

Cones: G₂-structure φ_C defined by $f_i = c_i r$.

Closed cones: $d\varphi_C = 0 \Leftrightarrow$ scale-normalisation of c

Then $X=-\frac{\lambda r}{3}\frac{\partial}{\partial r}\Rightarrow\lambda\varphi_C+\mathcal{L}_X\varphi_C=0,$ while $\Delta\varphi_C$ is of lower order \rightsquigarrow For $\lambda \neq 0$, $\big(\varphi_{\mathcal{C}}, -\frac{\lambda r}{3}\frac{\partial}{\partial r}\big)$ can be used as a model for an AC end Unique holonomy G_2 cone: $f_1 = f_2 = f_3 = \frac{r}{2}$

Explicit asymptotically conical shrinkers

Shrinkers provide models for formation of singularities, and tend to be rare.

Theorem A

There is a complete $SU(3)\times \mathbb{Z}_2$ -invariant shrinking G₂-soliton on $\Lambda^2_- \mathbb{C}P^2$, and an Sp(2)-invariant one on Λ^2_- S 4 , defined by $\lambda=-1$ and

$$
f_1 = r, \quad f_2 = f_3 = \sqrt{\frac{9}{4} + \frac{r^2}{4}}, \quad X = \left(\frac{t}{3} + \frac{4t}{9 + t^2}\right) \frac{\partial}{\partial r}.
$$

This is asymptotically conical because $\frac{f_i}{r} \to c_i$ (for $c = (1, \frac{1}{2}, \frac{1}{2})$).

The asymptotic cone is characterised by $\lim\limits_{r\to\infty}$ f_1 $\frac{1}{f_2} = 2.$

Asymptotic rate is
$$
\nu = -2
$$
 because $\frac{f_i}{r} = c_i + O(r^{-2})$.

Conjecture: This is the unique complete $Sp(2)$ -invariant shrinker.

Asymptotically conical expanders on $\Lambda^2_- S^4$

Expanders provide models for how the flow can smooth out a singularity.

Theorem B Every complete Sp(2)-invariant expanding G₂-soliton on $\Lambda^2_- S^4$ is AC with rate -2 . Up to scale, there is precisely a 1-parameter family of such expanders. Their asymptotic limits are distinct, bijecting with $(0,1)$ by $\lim_{r\to\infty}$ f_1 $\frac{1}{f_2}$. Keeping the scale fixed, the family can be parametrised by $\lambda > 0$.

Limit as $\lambda \to 0$ is the Bryant-Salamon G_2 -manifold (which has $\lim\limits_{r\to\infty}$ f_1 $\frac{1}{f_2}=1$), considered as a static G_2 -soliton.

Remark

The asymptotic cone of the explicit AC shrinker on $\mathsf{A}^2_\mathsf{--} S^4 \left(\lim\limits_{r\to\infty}\right.$ $\frac{f_1}{f_2}$ = 2) does *not* match the cone of any AC $Sp(2)$ -invariant expander $\binom{\lim}{r \to \infty}$ $\frac{f_1}{f_2} < 1$).

Asymptotically conical expanders on $\Lambda_-^2 \mathbb{C}P^2$

Theorem B also yields a corresponding 1-parameter family of $SU(3)\times\mathbb{Z}_2$ -invariant expanders on $\Lambda^2\mathbb{C}P^2$.

While AC shrinker ends are rigid, AC expander ends are stable.

Perturbing 1-parameter family of $SU(3) \times \mathbb{Z}_2$ -invariant solutions \rightsquigarrow

Theorem C

Up to scale, $\Lambda^2 \mathbb{C}P^2$ admits a 2-parameter family of $SU(3)$ -invariant expanding G₂-solitons that are AC with rate -2 .

We do not expect every complete $SU(3)$ -invariant expander to be AC.

$$
f_1=\frac{3}{\lambda r},\;f_2^2=f_3^2=r\;e^{\frac{\lambda r^2}{6}}
$$

solves the soliton ODEs to leading order, and can be corrected to forward-complete solutions with doubly exponential volume growth.

Conjecture: The boundary of the 2-parameter family of $SU(3)$ -invariant AC expanders corresponds to complete expanders with such ends.

Flowing through conical singularity?

If a singularity forms modelled on the explicit AC shrinker on $\Lambda^2_- S^4$, then no $Sp(2)$ -invariant expander provides a model for how to smooth it out again.

Harder to control which closed $SU(3)$ -invariant cones over $SU(3)/\mathit{T}^{2}$ appear as asymptotic limits of complete $SU(3)$ -invariant expanders on $\Lambda^2_-{\mathbb C} P^2$, but numerics suggest:

the asymptotic cone of the shrinker on $\Lambda^2_-{\mathbb C} P^2$

does match

the asymptotic cone of some $SU(3)$ -invariant expander on $\Lambda^2_-{\mathbb C} P^2$

after applying an order 3 automorphism to $SU(3)/\mathit{T}^{2}$ that does not extend to $\Lambda^2_-{\mathbb C} P^2$ (instead permuting 3 different S^2 -fibrations $SU(3)/{\it T}^2\rightarrow {\mathbb C} P^2)$

 \rightsquigarrow potential model for "flowing through" the singularity, crushing a $\mathbb{C}P^2$ and inflating it again in one of two topologically different ways.

This would realise a " G_2 conifold transition" (**Atiyah-Witten (2001)**).

Complete steady solitons

All known complete examples of steady Ricci solitons have sub-Euclidean volume growth. In contrast

Theorem D

There is precisely a 1-parameter family of $SU(3)$ -invariant AC steady G_2 solitons on $\Lambda^2_-{\mathbb C} P^2$, all asymptotic with rate -1 to the unique SU(3)-invariant torsion-free cone $(f_i = \frac{r}{2} + O(1))$.

One limit is again the static soliton on the Bryant-Salamon AC G_2 -manifold. The other limit is an explicit complete steady G_2 -soliton:

$$
f_1=\sqrt{1+e^{-r}},\,\,f_2=\sqrt{1+e^{r}},\,\,f_3=2\sinh\frac{r}{2},\quad X=\tanh\frac{r}{2}\frac{\partial}{\partial r}
$$

Asymptotic geometry:

 S^2 fibres in one other fibration $SU(3)/T^2 \rightarrow \mathbb{C}P^2$ have constant size. Base is the sinh cone over $\mathbb{C}P^2$, i.e. the negative Einstein metric

$$
dr^2 + (\sinh r)^2 g_{\mathbb{C}P^2} \quad \text{on} \quad \mathbb{R}_+ \times \mathbb{C}P^2.
$$

2. Holonomy G_2 and Laplacian flow Riemannian holonomy G_2

 $G_2 := \text{Aut } \mathbb{O}, \quad \mathbb{O} = \text{octonions}$, normed division algebra of real dimension 8. G_2 acts on Im $\mathbb{O} \cong \mathbb{R}^7$, preserving metric, orientation, cross product G_2 is the stabiliser in $GL(7, \mathbb{R})$ of a stable $\varphi_0 \in \Lambda^3(\mathbb{R}^7)^*$ (*i.e.* the $GL(7, \mathbb{R})$ -orbit of φ_0 is open).

 $\varphi\in\Omega^3(M^7)$ pointwise equivalent to φ_0 defines a G_2 -structure. Because $G_2 \subset SO(7)$, such a φ induces a metric and orientation. $Hol(M) \subseteq G_2 \Leftrightarrow$ metric induced by some G_2 -structure φ such that $\nabla \varphi = 0$. Then call φ torsion-free. This is equivalent to the first-order non-linear PDE

$$
d\varphi=d^*\varphi=0.
$$

Metrics with holonomy G_2 are always Ricci-flat.

All known constructions of examples on closed manifolds (Joyce 1994...) solve the elliptic PDE by gluing together pieces with dimensional reduction.

Bryant-Salamon AC G_2 metrics

Most complete non-compact examples have a symmetry reduction.

First complete examples due to **Bryant-Salamon (1987)**. These

■ are asymptotically conical, *i.e. M* \setminus (compact set) \cong $\mathbb{R}_+ \times \Sigma^6$ and

$$
g=dr^2+g_{\Sigma}+O(r^{\nu}), \quad \varphi=r^2dr\wedge\omega+r^3\alpha+O(r^{\nu})
$$

for $\omega \in \Omega^2(\Sigma^6), \ \alpha \in \Omega^3(\Sigma^6)$ defining $SU(3)$ -structure.

■ have cohomogeneity 1 G-action, *i.e.* generic orbit Σ has dimension 6.

Last two Σ have \mathbb{Z}_3 of automorphisms that do not extend to diffeomorphisms of M

 \rightsquigarrow G₂ conifold transitions: 3 topologically distinct ways to glue in zero section to resolve conical singularity $\mathbb{R}_{>0} \times \Sigma$.

Bryant's Laplacian flow

Solve d φ_t

$$
\frac{d\varphi_t}{dt}=\Delta_{\varphi_t}\varphi_t
$$

with initial condition φ_0 satisfying $d\varphi_0 = 0$. (Then $d\varphi_t = 0$ for all t.)

- Stationary points are exactly torsion-free G_2 -structures.
- **Gradient flow for vol(** φ **) restricted to cohomology class of** φ_0 **.**
- Induced metric evolves by

 $\frac{dg_t}{dt} = -2Ric(g_t) +$ terms quadratic in torsion of φ_t

Theorem (Bryant-Xu 2011, Lotay-Wei 2017)

Short-time existence and uniqueness. Torsion-free G_2 -structures are stable.

What is long term behaviour?? Expect singularities to form in finite time. By analogy with other flows, expect solitons as models.

$G₂$ soliton equations

G₂-structure φ , vector field X, dilation constant $\lambda \in \mathbb{R}$ satisfying

$$
\begin{cases}\nd\varphi = 0, \\
\Delta_{\varphi}\varphi = \lambda\varphi + \mathcal{L}_X\varphi.\n\end{cases}
$$

⇔ self-similar solution of Laplacian flow

$$
\varphi_t = k(t)^3 f^* \varphi,
$$
 $\frac{df}{dt} = k(t)^{-2} X,$ $k(t) = \frac{3 + 2\lambda t}{3}$

- $\lambda > 0$: expanders (immortal solutions) $\lambda = 0$: steady solitons (eternal solutions) λ < 0: shrinkers (ancient solutions)
- Non-steady soliton $\Rightarrow \varphi$ exact
- Solitons on a compact manifold are stationary or expanders
- Scaling behaviour: (φ, X) is a λ -soliton $\Leftrightarrow (k^3\varphi, k^{-1}X)$ is a $k^{-2}\lambda$ -soliton.

3. Initial value problem for invariant solitons Invariant G_2 -structures

 $SU(3)$ -invariant G_2 -structures φ on $\mathbb{R}_+\times SU(3)/\mathit{T}^2$ such that ■ $\|\frac{\partial}{\partial r}\|=1$, and

 $\;\;\bar{}\;$ restriction to each slice $SU(3)/\, T^2$ is closed

are parametrised by triples of functions $f_1, f_2, f_3 : \mathbb{R}_+ \to \mathbb{R}_+$.

$$
\varphi = \mathsf{d} r \wedge (f_1^2 \omega_1 + f_2^2 \omega_2 + f_3^2 \omega_3) + f_1 f_2 f_3 \alpha
$$

for $\omega_i\in \Omega^2({SU(3)}/\,{T^2})$ and $\alpha\in \Omega^3({SU(3)}/\,{T^2})$ $SU(3)$ -invariant. $f_i=$ scale of S^2 fibres of one of three possible fibrations $SU(3)/\varGamma^2\to \mathbb{C}P^2$ $\text{Vol}(\textit{SU}(3)/\textit{T}^2)$ proportional to $(f_1f_2f_3)^2$

Ones with $f_2 = f_3$ have extra \mathbb{Z}_2 symmetry, and also define analogous $Sp(2)$ -invariant G_2 -structures on $\mathbb{R}_+ \times \mathbb{C}P^3$. (Then f_1 = scale of S^2 fibres of $\mathbb{C}P^3 \to S^4$, and $f_2 = f_3$ a scale of base.)

Closure and soliton ODE

$$
d\varphi = 0 \Leftrightarrow 2\frac{d}{dr}(f_1f_2f_3) = f_1^2 + f_2^2 + f_3^2
$$

Cones $\leftrightarrow f_i = c_i r$ linear Then $d\varphi = 0 \Leftrightarrow 6c_1c_2c_3 = c_1^2 + c_2^2 + c_3^2$ is a scale-normalisation: Unique choice of "cone angle" to make a closed cone for each homothety class on $SU(3)/{\it T}^2$ \rightarrow 2-parameter family of closed cones

The soliton condition for $\varphi = f_1^2 \omega_1 + f_2^2 \omega_2 + f_3^2 \omega_3 + f_1 f_2 f_3 \alpha$ and $X = u \frac{\partial}{\partial r}$ is naively a 2nd-order ODE system for (f_1, f_2, f_3, u) (with some constraints).

Useful to rewrite it as a 1st-order ODE in $(f_1, f_2, f_3, \tau_1, \tau_2, \tau_3)$, where τ_i capture the torsion by $d^*\varphi = \tau_1\omega_1 + \tau_2\omega_2 + \tau_3\omega_3$.

This is a system in 5 variables after taking into account that

$$
d\varphi = 0 \Rightarrow \varphi \wedge d^*\varphi = 0 \Rightarrow \frac{\tau_1}{f_1^2} + \frac{\tau_2}{f_2^2} + \frac{\tau_3}{f_3^2} = 0.
$$

Smooth extension problem

Suppose that $H \subset G$, that H acts on vector space V, and that the action is transitive on unit sphere in V, with stabiliser $K \subset H$. Then think of the vector bundle $G \times_K V := (G \times V)/K \rightarrow G/K$ as

zero section
$$
G/K \quad \sqcup \quad \mathbb{R}_+ \times G/H
$$
.

To find complete structures on $G \times_K V$, first step is to ask:

Which solutions on $(0, \epsilon) \times G/H$ extend smoothly over G/K at $r = 0$?

Applying methods Eschenburg-Wang (2000)

■ Identify conditions on $f_i : [0, \epsilon) \rightarrow \mathbb{R}_+$ to ensure smooth extension of $\varphi=f_{1}^{2}\omega_{1}+f_{2}^{2}\omega_{2}+f_{3}^{2}\omega_{3}+f_{1}f_{2}f_{3}\alpha$ from $(0,\epsilon)\times SU(3)/\mathit{T}^{2}$ to $\mathbb{C}P^{2}$:

 \Box f_1 odd with $f_1'(0)=1$ (so that ${\cal S}^2$ fibres shrink to zero at right rate)

 \Box f_2 and f_3 even with $f_2(0)=f_3(0)=b=\sqrt[4]{\text{Vol}(\mathbb{C} P^2)}>0$

Then solve by power series.

Solutions to the soliton initial value problem

Proposition

For each $\lambda \in \mathbb{R}$, there is a 2-parameter family $\varphi_{b,c}$ of solutions to the G₂-soliton equation with dilation constant λ defined for small r that extend smoothly to (a neighbourhood of zero section in) $\mathsf{\Lambda}^2_-\mathbb{C}P^2$.

Two scale-invariant parameters: λb^2 and $\frac{c}{b}$.

 \rightarrow up to scale there are 2-parameter families of local expanders and shrinkers on $\Lambda^2_- \mathbb{C} P^2$, and 1-parameter family of local steady solitons.

The parameter b is $\sqrt[4]{\text{Vol}(CP^2)}$, while c controls the leading term in $f_2 - f_3$.

The subfamily $\varphi_{b,0}$ has $f_2 = f_3$, so

- has extra \mathbb{Z}_2 -symmetry (multiplication by -1 on fibres of $\Lambda^2_- \mathbb{C}P^2)$
- also defines solution near zero section of $\Lambda^2_- S^4$.
- \rightsquigarrow up to scale there are 1-parameter families of local expanders and shrinkers on $\Lambda^2_- S^4$, and a unique local steady soliton.

The latter defines the static soliton on the Bryant-Salamon G_2 -manifold.

Hence there are no non-trivial $Sp(2)$ -invariant steady solitons on Λ_-^2 S^4 .

4. Forward-completeness Scale decoupling and AC ends for steady solitons

The steady case $\lambda = 0$ has a very different character because the scale

$$
g:=\sqrt[3]{f_1f_2f_3}=\sqrt[6]{\mathrm{vol}(\Sigma)}
$$

essentially decouples from the homothety class

$$
\left(\frac{f_1}{g},\frac{f_2}{g},\frac{f_3}{g}\right)
$$

The latter evolves in a surface under a 2nd order autonomous ODE \Leftrightarrow 1st order ODE in 4 parameters

Torsion-free cone $c_1 = c_2 = c_3 = \frac{1}{2}$ is unique fixed point, and stable

 \Rightarrow Solutions with $\frac{f_i}{g}$ bounded are asymptotic to the torsion-free cone. Eigenvalues of linearisation at fixed point give rate -1 . Since $\varphi_{b,0}$ is AC (static Bryant-Salamon), $\varphi_{b,c}$ is AC too for c near 0.

Trichotomy for $SU(3)$ -invariant steady ends

Proposition

Any initial condition for an SU(3)-invariant steady soliton on $\mathbb{R}\times$ SU(3)/T 2 leads to one of the following behaviours forward in time (up to permuting f_i)

- (i) AC with rate -1 to torsion-free cone
- (ii) Complete with exponential volume growth: $f_1 \rightarrow \frac{1}{k}$, while $f_2 \sim f_3 \sim e^{kr}$.

(iii) $f_1 = O(\sqrt{t_* - t})$, $f_2, f_3 = O((t_* - t)^{-1/4})$ near finite extinction time t_* .

We can decide the type of each smoothly closing local solution $\varphi_{b,c}$ thanks to spotting an explicit solution of type (ii) corresponding to $\varphi_{\sqrt{2},3}$

$$
f_1 = \sqrt{1 + e^{-r}}, f_2 = \sqrt{1 + e^r}, f_3 = 2 \sinh \frac{r}{2}, u = \tanh \frac{r}{2}.
$$

Theorem D

For $\lambda = 0$, the local solution $\varphi_{b,c}$ is (i) AC for $\frac{c^2}{b^2}$ $\frac{c^2}{b^2} < \frac{9}{2}$.

> (ii) Exponentially growing for $\frac{c^2}{b^2}$ $\frac{c^2}{b^2} = \frac{9}{2}$. (iii) Incomplete for $\frac{c^2}{h^2}$ $\frac{c^2}{b^2} > \frac{9}{2}$.

Non-steady AC ends

The scale does not decouple for $\lambda \neq 0$. On the contrary, scaling up any point in the phase space makes λ terms more dominant, causing

Proposition

Any SU(3)-invariant non-steady soliton with all ratios $\frac{f_{i}}{f_{j}}$ bounded in forward time is AC with rate -2 .

Schematically, because λ has dimensions of length $^{-2}$, the other factor S of those terms has dimensions of length 2 , and satisfies an equation

$$
\frac{dS}{dt} = -\lambda \alpha S + \beta
$$

where α and β have dimension of length, and α involves only the f_i (not $\frac{df_i}{dr}$) \rightsquigarrow S has a limit as $r\rightarrow\infty$, so r^{-2} relative to its dimensions of length 2 $→$ AC rate is -2

This behaviour is **stable** for $\lambda > 0$ unstable for $\lambda < 0$

AC end solutions

Proposition

For each $\lambda \neq 0$ and (c_1, c_2, c_3) such that $c_1^2 + c_2^2 + c_3^2 = 6c_1c_2c_3$ there exists

- a unique AC end solution if $\lambda < 0$
- \blacksquare a 2-parameter family of AC end solutions if $\lambda > 0$ asymptotic to the corresponding closed cone (i.e. $\frac{f_i}{r}\rightarrow c_i$).

Letting $u=r^{-2}$, the sign of λ becomes significant in an ODE analogous to $\frac{dx}{du} = \lambda \frac{x}{u^2}$ $\frac{x}{u^2} + \frac{x}{2u}$ $\frac{x}{2u} + 1$ with $x \to 0$ as $u \to 0$. $\lambda < 0$: Unique smooth solution $\displaystyle{x(u)=\sqrt{u}\exp\left(\frac{-\lambda}{\lambda}\right)}$ u \bigwedge \bigwedge 0 exp $\Big(\frac{\lambda}{\tau}\Big)$ s $\frac{ds}{\sqrt{s}}$ $\lambda = 0$: General solution $x(u) = 2u + C\sqrt{u}$ $\lambda > 0$: Any two smooth solutions differ by multiple of $\sqrt{u}\exp\Big(-\frac{\lambda}{2}\Big)$ u \setminus

Haskins-Khan-Payne (2022) prove rigidity of AC ends for gradient shrinking G_2 solitons without cohomogeneity one assumption

AC shrinkers

Heuristic for $\lambda < 0$:

Invariant shrinkers on $\mathbb{R}_+\times SU(3)/\mathcal{T}^2$ are flow lines in 5-dim phase space. In 4-dimensional space of flow lines

- 2-dimensional submanifold extends across zero section $\mathbb{C}P^2\subset\Lambda^2_-\mathbb{C}P^2$
- 2-dimensional submanifold has AC behaviour

Expect isolated intersections \leadsto finitely many AC shrinkers on $\Lambda^2_- \mathbb{C}P^2$.

Theorem A

For $\lambda=-1$, $\varphi_{\frac{3}{2},0}$ is the explicit solution

$$
f_1 = r
$$
, $f_2^2 = f_3^2 = \frac{9}{4} + \frac{r^2}{4}$, $u = \frac{r}{3} + \frac{4r}{9 + r^2}$.

 \rightsquigarrow $SU(3)\times{\mathbb Z}_2$ -invariant shrinker on $\Lambda^2_-{\mathbb C} P^2$ and $Sp(2)$ -invariant shrinker on $\Lambda^2_- S^4$, AC with rate -2 to cone with $c_1 = 1$, $c_2 = c_3 = \frac{1}{2}$.

Conjecture: Unique complete shrinker with this symmetry.

Trichotomy for $Sp(2)$ -invariant expander ends

In the expander case,

$$
f_1=\frac{3}{\lambda r},\ f_2=A\sqrt{r}\ e^{\frac{\lambda r^2}{12}}
$$

can be uniquely corrected to a forward-complete end solution for each $A > 0$.

This 1-parameter family of end solutions with doubly exponential growth forms a "wall" between two different stable types of forward-evolution.

Theorem

Any initial condition for an Sp(2)-invariant expander on $\mathbb{R}\times \mathbb{C}P^3$ leads to one of the following behaviours forward in time

(i) AC with rate -2 to a closed cone

(ii) Complete with doubly exponential growth: $f_1 \sim \frac{3}{\lambda r}$, while $f_2 \sim \sqrt{r} e^{\frac{\lambda r^2}{12}}$.

(iii) $f_1 = O(\sqrt{t_* - t})$, $f_2 = O((t_* - t)^{-1/4})$ near finite extinction time t_* .

All smoothly-closing $Sp(2)$ -invariant solutions $\varphi_{b,0}$ on $\Lambda^2_- S^4$ fall in case (i), but we expect an analogous transition to be relevant for smoothly-closing $SU(3)$ -invariant expanders $\varphi_{b,c}$ on $\Lambda^2_- \mathbb{C}P^2$.

$Sp(2)$ -invariant AC expanders on $\Lambda^2_- S^4$

Theorem B

- (i) Every Sp(2)-invariant local expander $\varphi_{b,0}$ defined near the zero section of $\Lambda^2_- S^4$ is AC.
- (ii) Moreover $\mathcal{L}: b \mapsto \lim_{r \to \infty}$ $\frac{f_1}{f_2}$ is a continuous bijection $(0,\infty)\rightarrow (0,1)$ (so each closed $Sp(2)$ -invariant cone $f_i = c_i t$ such that $c_1 < c_2$ is the asymptotic cone of unique complete expander).

Elementary techniques suffice for (i) and non-decreasingness of \mathcal{L} , checking that certain inequalities are preserved.

 $\mathcal L$ strictly increasing builds on detailed understanding of ends with given asymptotic cone.

 $b \rightarrow 0$ limit equivalent up to scale to keeping b fixed and letting $\lambda \rightarrow 0$. This limit is the Bryant-Salamon manifold (with $c_1 = c_2 = \frac{1}{2}$).

 $b \rightarrow \infty$ limit requires a more subtle comparison.

5. Twistor bundles and rescaling limits of ODEs Rescalings of the $Sp(2)$ -invariant soliton ODE

Recall variables in $Sp(2)$ -invariant soliton ODEs:

 $f_2 \leftrightarrow$ scale of the base of $\Lambda^2_- S^4 \rightarrow S^4$

 $f_1\leftrightarrow$ scale of S^2 fibres when foliating by sphere bundles

Changing variable f_2 to $\epsilon f_2 \Leftrightarrow$ rescaling "reference metric" on base of $\Lambda^2_- S^4$

Taking $\epsilon \to 0$

 \rightsquigarrow ODE for solitons on $\Lambda^2_-\mathbb{R}^4$ invariant under lsom $(\mathbb{R}^4)=SO(4)\ltimes\mathbb{R}^4$.

This limit ODE is easier to analyse due to additional scale invariance and a conserved quantity.

The expander system has an explicit solution $f_1 = \frac{3}{\sqrt{3}}$ $rac{3}{\lambda r}, f_2^2 = r e^{\frac{\lambda r^2}{6}},$ incomplete at $r = 0$ but helps understand transition in original system. Limit of $\varphi_{b,0}$ as $b \to \infty$ \rightsquigarrow AC solution, which helps control $\mathcal{L}(b)$

Taking $\epsilon =$ $\sqrt{-1}$ \rightsquigarrow ODE for solitons on $\Lambda^2_-H^4$ invariant under lsom $(H^4)=SO(4,1).$

Twistor space interpretation

For X^4 oriented, consider on the sphere bundle in $\Lambda^2_- X$ (twistor space)

- volume form ω_1 on fibres
- tautological 2-form ω_2

For X self-dual Einstein, the conditions for the $Isom(X)$ -invariant

$$
\varphi=dr\wedge \big(f_1^2\omega_1+f_2^2\omega_2\big)+f_1f_2^2d\omega_1\in\Omega^3(\Lambda^2_-X)
$$

to be a soliton depend only on the scalar curvature κ . So

$$
\kappa = 1 \leftrightarrow Sp(2)
$$
-invariant ODE on $\Lambda^2_{-}S^4$;

in general get the $\epsilon = \sqrt{\kappa}$ rescaling.

In particular, the $\epsilon = 0$ limit can be interpreted as ODE for warped products solitons on $\mathbb{R} \times S^2 \times Y^4$, with Y hyper-Kähler.

The steady case was considered by **Ball (2022)**.

Rescalings of the SU(3)-invariant soliton ODE

In a similar way, rescaling f_2 and f_3 in the $SU(3)$ -invariant soliton ODEs is related to considering $\Lambda_-^2 X$ for self-dual *Kähler*-Einstein X^4 for different κ . (In particular, one could consider $SU(2,1)$ -invariant solitons of $\Lambda^2 \mathbb{C}H^2$). $f_2 = f_3 \Leftrightarrow$ invariance under under multiplying fibres of $\Lambda^2_- X$ by -1 , recovering ODE from the case not requiring Kähler.

The limit of rescalings of the explicit exponentially growing solution $f_1 = \sqrt{1 + e^{-r}}, \ f_2 = \sqrt{1 + e^{r}}, \ f_3 = 2 \sinh \frac{r}{2}$ give an explicit solution

$$
f_1=1,\;f_2=f_3=e^r
$$

on $\mathbb{R}_{>0}\times S^2\times Y$ for Y hyperKähler

 \rightsquigarrow complete steady G_{2} soliton that is metric product of S^{2} and $\mathit{dr}^{2}+\mathit{e}^{\mathit{r}}\mathit{g}_{\mathit{Y}}$

Another rescaling of $Sp(2)$ -invariant soliton ODE

Changing variables $f_1 \rightarrow \epsilon^2 f_1$, $f_2 \rightarrow \epsilon f_2$ and taking $\epsilon \rightarrow 0$

 \Leftrightarrow rescaling both fibres and base of S^2 -fibration $\mathbb{C}P^3\to S^4$ of link of $\Lambda^2_- S^4$ \rightsquigarrow soliton ODE on $\mathbb{R}{\times}\mathbb{C}{\times}\mathbb{C}^2$, invariant under complex Heisenberg group $\mathcal{H}_3.$

Same as soliton ODE for certain G_2 -structures on $\mathbb{R}\times$ suitable \mathcal{T}^2 -bundle over hyper-Kähler Y^4 .

Fowdar (2022): Explicit shrinker solution $f_1 = 4e^r$, $f_2 = e^{\frac{t}{2}}$

We find another complete shrinker with one AC end and one cusp end modelled on Fowdar's.